一种具有高稳定性可生物降解的双网络油水分离网膜的制备方法

    公开(公告)号:CN108905296B

    公开(公告)日:2020-08-25

    申请号:CN201810771389.8

    申请日:2018-07-13

    Abstract: 本发明涉及一种具有高稳定性可生物降解的双网络油水分离网膜的制备方法,是以氧化处理后表面具有纳米片状粗糙结构的铜网为基板支撑材料,以具有亲水性高、耐盐及可生物降解等优点的天然多糖类物质海藻酸钠及壳聚糖为主体成胶材料,采用天然生物交联剂京尼平对内层壳聚糖网络进行部分交联以使其固定在铜网基板上,同时保持壳聚糖网络结构的柔韧性;外层海藻酸钠网络则采用二价钙离子进行物理交联固定,内、外层之间靠静电力及氢键作用自组装成双层网络结构。本发明具有特殊的双网络结构的油水分离网膜除具有油水分离效率高、抗油污、耐酸碱及高盐环境外,还具有稳定性高、耐用性久的优势,此外,该网膜涂层绿色、环保、可完全生物降解。

    基于套管式反应器的离子液体连续化生产装置

    公开(公告)号:CN104557719B

    公开(公告)日:2016-06-29

    申请号:CN201510040343.5

    申请日:2015-01-27

    Abstract: 本发明涉及一种基于套管式反应器的离子液体连续化生产装置,是一种集预混、预热反应、移热反应、加热反应、返混功能于一体的离子液体生产装置,该装置包括预混设备、套管式预热反应器、套管式移热反应器、预热热补偿设备、加热热补偿设备和套管式加热反应器。本发明可频繁交替生产和制备不同种类离子液体,解决工业规模应用对大批量离子液体生产的需求,其从原料投入到产品或半成品产出过程连续完成,且在反应过程中利用流量和热量控制,防止局部异常过热,提高终产品或半成品纯度,具有设备搭建装配简便易操作、反应物料转化率高、投入和操作成本低以及绿色环保节能等优点。

    一种超声波-微波联用液化生物质的方法

    公开(公告)号:CN103642512B

    公开(公告)日:2016-05-11

    申请号:CN201310611458.6

    申请日:2013-11-28

    Abstract: 本发明公开了一种超声波-微波联用液化生物质的方法,包括生物质的预处理、生物质的液化和液化产物的分离。将超声波-微波联用技术应用于生物质的液化过程,通过强化该过程的传热与传质,实现了生物质的快速液化,解决了传统搅拌和加热方式下生物质液化的液固比大、能耗高和反应时间长等问题,为高效转化生物质以获取能源与化学品提供了一种新方法。

    一种超声波-微波联用液化生物质的方法

    公开(公告)号:CN103642512A

    公开(公告)日:2014-03-19

    申请号:CN201310611458.6

    申请日:2013-11-28

    Abstract: 本发明公开了一种超声波-微波联用液化生物质的方法,包括生物质的预处理、生物质的液化和液化产物的分离。将超声波-微波联用技术应用于生物质的液化过程,通过强化该过程的传热与传质,实现了生物质的快速液化,解决了传统搅拌和加热方式下生物质液化的液固比大、能耗高和反应时间长等问题,为高效转化生物质以获取能源与化学品提供了一种新方法。

    一种超临界流体催化液化植物原料的方法

    公开(公告)号:CN103555353A

    公开(公告)日:2014-02-05

    申请号:CN201310374307.3

    申请日:2013-08-26

    Abstract: 本发明公开了一种超临界流体催化液化植物原料的方法,包括以下步骤:(1)将植物原料粉碎并过40~60目筛、烘干;(2)在高压反应釜中加入植物原料和醇溶剂,以固体杂多酸为催化剂,在超临界状态下反应10-50min后,将液化产物用无水乙醇洗出,经过抽滤、旋蒸获得生物质油。本发明可以大大地提高植物原料的液化率;以固体杂多酸为催化剂,替代传统的液体强酸催化剂如H2SO4、HCl、HNO3等,具有环境污染小,不腐蚀设备、易分离等优点;获得的生物质油中酯类物质含量高,特别是乙酰丙酸酯含量高达20.82%,可直接用作汽油添加剂、生物液体燃油,具有无毒、高润滑性、高热值等优点,是一种清洁能源。

    一种高分散、非晶态钌基催化剂的制备方法及其催化苯选择性加氢制环己烯的应用

    公开(公告)号:CN115888783B

    公开(公告)日:2024-10-18

    申请号:CN202211233158.4

    申请日:2022-10-10

    Abstract: 本发明涉及一种高分散、非晶态钌基催化剂的制备方法及其催化苯选择性加氢制环己烯的应用,属于催化材料制备领域。该钌金属催化剂是通过原位浸渍法制得,即在水热合成金属有机骨架材料ZIF‑8的产物混合液中,直接原位添加钌盐,使其充分扩散至ZIF‑8分子笼中,再经高温焙烧使钌盐限域热解,实现钌原子孤立锚定在ZIF‑8衍生的氮掺杂碳载体骨架上,以单原子、双原子或钌原子团簇其中一种或多种组成,且呈非晶态形式负载在载体上。本发明中钌金属苯选择性加氢催化剂的制备方法具有贵金属钌利用率高、制备成本低、简单易行、绿色环保等优点,所制备的催化剂表现出优越的苯选择性加氢催化活性。

    一种利用林渔废弃物制备炭基牡蛎壳复合材料的方法及其产品

    公开(公告)号:CN116173903A

    公开(公告)日:2023-05-30

    申请号:CN202310104292.2

    申请日:2023-02-13

    Abstract: 本发明公开了一种利用林渔废弃物制备炭基牡蛎壳复合材料的方法及其产品,该方法以木屑和牡蛎壳粉为原料,通过混合、原位热处理成型、煅烧、清洗和烘干制得炭基牡蛎壳复合材料。该制备方法利用木质原料有机物的挥发和牡蛎壳主要成分碳酸钙受热分解产生的二氧化碳气体活化和提高材料孔隙率,制备吸附性能更为优越的炭基牡蛎壳复合材料;同时以牡蛎壳中丰富的微量元素为催化剂,结合氯化锌活化剂和木质原料在受热过程中产生的醋酸、甲醇和焦油等物质进行反应,使复合材料具有了新的反应和催化特性。本发明制得的炭基牡蛎壳复合材料开发周期短,成本低廉,能够较好地除磷、脱硫、脱氮和固碳,一定程度上解决园林绿化废弃物和渔业废弃物的堆积问题,实现废弃物资源再利用。

    一种超声波-微波同时辅助制备纳米纤维素的方法

    公开(公告)号:CN102899950B

    公开(公告)日:2015-10-14

    申请号:CN201210412449.X

    申请日:2012-10-25

    Abstract: 本发明公开了一种超声波-微波同时辅助制备纳米纤维素的方法,属于生物质纳米材料领域。该纳米材料是以液体酸为催化剂,在超声波与微波同时辅助下促使纤维素无定形区的高效水解,实现由植物纤维原料快速制备纳米纤维素。该制备方法包括植物纤维素的酸水解、液体酸的离心回收、纳米纤维素的离心分离。本发明充分利用超声波的机械分散作用、超声空化效应、微波均匀加热效应、液体酸的催化作用以及它们之间产生的协同作用,强化纤维素的水解过程,从而实现纳米纤维素的高效、快速制备。制备的纳米纤维素材料可用于食品添加剂、药物赋形剂、工程材料添加剂、特种纸添加剂等。

    一种正丁烷-乙醇-水双相溶剂低温提取植物油脂的方法

    公开(公告)号:CN103409230A

    公开(公告)日:2013-11-27

    申请号:CN201310298843.X

    申请日:2013-07-17

    Abstract: 本发明涉及一种正丁烷-乙醇-水双相溶剂低温提取植物油脂的方法,提取方法包括原料处理、预冷却、提取和分离。本发明的正丁烷-乙醇-水双相溶剂低温提取植物油脂方法,利用油料籽中的水分形成正丁烷-乙醇-水双相溶剂,即为“正丁烷-乙醇相”和“乙醇-水相”。“正丁烷-乙醇相”不仅可利用正丁烷高效提取植物油脂,乙醇还可提取油料中的维生素E等中等极性生物活性物质,有利强化产品植物油的保健功能。“乙醇-水相”可提取油料中维生素、多酚等极性生物活性物质和其他极性天然产物。本发明可实现常压下一次提取操作,完成油料中不同极性可溶性物质的提取,减少操作工序,实现资源的高效利用;而且,提取的植物油品质高、营养成分损失少、食品安全有保障。

Patent Agency Ranking