-
公开(公告)号:CN110210468B
公开(公告)日:2022-12-16
申请号:CN201910459252.3
申请日:2019-05-29
Applicant: 电子科技大学
Abstract: 本发明公开了一种基于卷积神经网络特征融合迁移的文字识别方法,包括:构建源卷积特征提取器、训练源卷积特征提取器、构建基于源卷积特征提取器的目标卷积神经网络模型、训练目标卷积神经网络模型和输入图片进行文字识别。本发明通过分析卷积神经网络模型的特点提出了一种新的特征迁移方法,使得源特征生成器结构和目标网络结构可以灵活地进行定义,从而在文字图像识别应用中更具备鲁棒,解决了传统卷积网络特征迁移方法在特征迁移的网络模型构建过程中缺乏灵活性的问题。
-
公开(公告)号:CN106372114B
公开(公告)日:2019-09-10
申请号:CN201610707020.1
申请日:2016-08-23
Applicant: 电子科技大学
IPC: G06F16/28 , G06F16/2455 , G06F16/242
Abstract: 本发明公开了一种基于大数据的联机分析处理系统和方法,该系统能够在Hadoop环境下针对不同规模级别数据集进行快速多维查询分析。通过查询规划评估选择的查询计划包括支持Hive的MDX查询和基于Hbase预计算缓存机制的多维查询。实现可扩展集群节点上支持Hive数据仓库的MDX查询,基于Hbase预计算缓存机制的多维查询优化,满足不同规模级别数据集的低延迟多维查询需求,解决了单一数据源背景下不同OLAP数据组织模型的OLAP多维查询。针对大规模数据集上的Hive多维查询性能优化问题,提出一种构建基于Hbase缓存的分段逐层降维聚合算法。该算法把解决大规模数据多维查询计算的MOLAP带入了大数据OLAP系统中,极大增强了大数据背景下,不同规模级别数据多维查询的可扩展性和高效性。
-
公开(公告)号:CN108805036A
公开(公告)日:2018-11-13
申请号:CN201810496579.3
申请日:2018-05-22
Applicant: 电子科技大学
IPC: G06K9/00
CPC classification number: G06K9/00718
Abstract: 本发明公开了一种新的非监督视频语义提取方法,包括构建三维卷积神经网络模型,使用视频数据库中带标签视频数据集训练三维卷积神经网络模型;使用滑动窗口将视频数据库中不带标签视频数据处理成符合三维卷积神经网络输入的数据;使用该生成数据作为三维卷积神经网络模型的输入数据,取三维卷积神经网络模型全连接层的输出数据作为视频段的语义特征;使用该生成的视频段语义特征序列作为视频语义自编码器的输入,通过自编码器整合得到视频整体语义特征。本发明实施例通过结合三维卷积神经网络和循环自动编码器的方案,解决了非监督的视频语义分析与提取问题,提高了视频语义提取准确度。
-
公开(公告)号:CN108182427A
公开(公告)日:2018-06-19
申请号:CN201810093226.9
申请日:2018-01-30
Applicant: 电子科技大学
Abstract: 本发明公开了一种基于深度学习模型和迁移学习的人脸识别方法,包括以下步骤:对源图像及目标图像进行预处理并设置对应标签,源图像数量为M,目标图像数量为N,M>N;建立分类器输出维度为M的源神经网络;基于源图像特征和标签构建源数据集并用源数据集对源神经网络进行训练,通过神经网络BP算法优化模型参数,得到源训练模型;建立分类器输出维度为N的目标神经网络并用源训练模型的参数对目标神经网络初始化;基于目标图像特征和标签构建目标数据集并用目标数据集对目标神经网络进行训练,通过动态选-K更新算法进行梯度下降优化模型参数,得到目标训练模型;通过目标训练模型进行图像识别;本发明提高了人脸识别模型的准确性和鲁棒性。
-
-
-