基于人体关键点行为识别与LSTM的跌倒预判方法

    公开(公告)号:CN112163564B

    公开(公告)日:2022-05-17

    申请号:CN202011158025.6

    申请日:2020-10-26

    Applicant: 燕山大学

    Abstract: 本发明提出基于人体关键点行为识别与LSTM的跌倒预判方法,该方法基于相邻人体关键点分组方法,进一步把人体分为头部、躯干和腿部三个区域进行行为识别,大大减少了计算量,从而提升了检测效率;在此基础上,通过采用LSTM,即长短期记忆神经网络机制来实现对采集视频的记忆功能,从而实现对人体行为变化的分析与识别功能,最后将识别结果归为三类:跌倒、非跌倒与其他。该方法减少了计算功耗,节约了跌倒检测时间,从而实现了实时检测与跌倒检测预判的功能。

    基于有限范围场景内的目标人群跟踪监控方法

    公开(公告)号:CN112200021A

    公开(公告)日:2021-01-08

    申请号:CN202011005357.0

    申请日:2020-09-22

    Applicant: 燕山大学

    Abstract: 本发明公开了一种基于有限范围场景内的目标人群跟踪监控方法,其包括:S1:基于有限视野范围,设计实现整套相机安放采集装置,以适应目标人群活动场景及视野全覆盖的需要;S2:依据目标人群的体型及脸型比例修改检测网络模型的锚框大小及比例,修改检测网络的损失函数,以提高检测的准确性;S3:检测人脸的同时对人脸采用具体的识别网络进行识别,使检测网络与人脸识别网络同时使用的情形下,既能提高检测识别精度,又不降低速度;S4:改进多目标跟踪监控模型,通过具体特征的提取以及具体场景的剪枝提高在目标人群跟踪监控的模型适应性。本设计方案在目标人群看护与预防意外的视觉方案中,实现了无漏、实时的同时,提高了监控的准确性及定位的速度。

    基于人体关键点行为识别与LSTM的跌倒预判方法

    公开(公告)号:CN112163564A

    公开(公告)日:2021-01-01

    申请号:CN202011158025.6

    申请日:2020-10-26

    Applicant: 燕山大学

    Abstract: 本发明提出基于人体关键点行为识别与LSTM的跌倒预判方法,该方法基于相邻人体关键点分组方法,进一步把人体分为头部、躯干和腿部三个区域进行行为识别,大大减少了计算量,从而提升了检测效率;在此基础上,通过采用LSTM,即长短期记忆神经网络机制来实现对采集视频的记忆功能,从而实现对人体行为变化的分析与识别功能,最后将识别结果归为三类:跌倒、非跌倒与其他。该方法减少了计算功耗,节约了跌倒检测时间,从而实现了实时检测与跌倒检测预判的功能。

Patent Agency Ranking