一种基于云模型的低速拒绝服务攻击检测方法

    公开(公告)号:CN109450957A

    公开(公告)日:2019-03-08

    申请号:CN201910004346.1

    申请日:2019-01-03

    Applicant: 湖南大学

    Abstract: 本发明公开了一种基于云模型的低速拒绝服务攻击检测方法,属于计算机网络安全领域。其中所述方法包括四个步骤,分别是样本采集、特征提取、构建攻击检测分类器和判定检测。首先在瓶颈链路中设置样本采集点收集网络流量数据并从中提取TCP流量数据,再通过能避免网络流量不确定性带来建模误差的云模型理论对网络流量进行分析,经逆向云生成算法分析瓶颈链路中TCP流量得出数值特征组,最后使用具有“小样本”学习能力的支持向量机建立攻击检测分类器,以攻击检测分类器的输出为依据判断是否发生低速拒绝服务攻击。本发明提出的低速拒绝服务攻击检测方法所需样本数少,同时具有较低的误报率和漏报率。

    一种基于分形残差的LDoS攻击实时检测方法

    公开(公告)号:CN111294362B

    公开(公告)日:2021-07-27

    申请号:CN202010183854.3

    申请日:2020-03-16

    Applicant: 湖南大学

    Abstract: 本发明公开了一种基于分形残差的LDoS攻击实时检测方法,属于网络安全领域。其中所述方法包括:获取单位时长内检测网络的数据流量,基于滑动窗口的概念,对获取到的数据流量进行处理,获得数据流量的Hurst滑动窗口。根据R/S算法分析计算Hurst滑动窗口的分形值,使用拟合残差公式,计算Hurst滑动窗口的分形残差值,将待测网络数据流量的分形残差值与变异系数共同作用作为决策特征值,与事先训练出来的决策阈值进行比较,依据相关判定准则判定,是否存在因LDoS攻击而导致的网络流量的分形残差值异常,从而检测该Hurst滑动窗口内是否发生LDoS攻击。本发明提出的基于分形残差的LDoS攻击实时检测方法,误报率和漏报率较低,检测准确度较高,实时性好。

    一种基于SDN控制器的LDoS攻击检测与缓解方案

    公开(公告)号:CN112788058A

    公开(公告)日:2021-05-11

    申请号:CN202110121874.2

    申请日:2021-01-28

    Applicant: 湖南大学

    Abstract: 本发明公开了一种基于SDN控制器的LDoS攻击检测与缓解方案,属于计算机网络安全领域。该方案实现步骤为:固定采样时间和采样间隔,在采样时间内基于采样间隔周期性地调用SDN控制平面的API,获取交换机的端口流量和流表流量,并结合轻量级端口异常检测方法和LightGBM分类模型,根据获取的流量信息判断网络在采样时间内是否存在LDoS攻击。若攻击存在,该方案通过Smith‑Waterman算法定位受攻击端口,并下发流表规则丢弃攻击流量。本发明公开的方案可以实现高速率、低消耗、高精准度的LDoS攻击检测,并能够有效地过滤掉攻击流量,达到缓解攻击的目的。

    一种基于梅尔倒谱与半空间森林结合的LDoS攻击检测方法

    公开(公告)号:CN111444501A

    公开(公告)日:2020-07-24

    申请号:CN202010183134.7

    申请日:2020-03-16

    Applicant: 湖南大学

    Abstract: 本发明公开了一种基于梅尔倒谱与半空间森林结合的慢速拒绝服务(LDoS)攻击检测方法,属于网络安全领域。其中所述方法包括:实时获取单位时间片内待检测网络的混合流量数据,提取网络流量在梅尔频率上的倒谱系数,将其作为度量正常流量和LDoS攻击流量的初始特征;然后采用互信息特征选择算法对已提取的初始特征进行优化选择;最后将择优后的特征输入到基于数据质量异常检测的半空间森林模型,通过该模型对正常流量和LDoS攻击流量进行准确区分,从而达到检测LDoS攻击的目的。本发明提出的梅尔倒谱与半空间森林结合的检测方法能高效、快速、自适应地检测LDoS攻击。

    基于感知线性预测和SVDD的LDoS攻击检测方法

    公开(公告)号:CN114095222B

    公开(公告)日:2022-11-11

    申请号:CN202111337559.X

    申请日:2021-11-10

    Applicant: 湖南大学

    Abstract: 本发明公开了一种基于感知线性预测和SVDD的LDoS攻击检测方法,属于计算机网络安全领域。其中所述的方法包括:以相同的采样间隔对到达路由器的数据包数量进行采样,并用分帧和加窗的方式对采样得到的流量数据进行预处理得到短时频谱。对预处理后得到的短时频谱进行短时傅里叶变换得到短时能量谱,再对短时能量谱进行临界频带分析,然后进行感知线性预测分析,提取感知线性预测系数作为感知线性预测特征。用感知线性预测特征训练集成SVDD分类器构建LDoS攻击检测模型准确区分正常流量和LDoS攻击流量,对网络中的LDoS攻击进行检测。本发明提出的基于感知线性预测和SVDD算法的LDoS攻击检测方法具有较高的准确率和较低的误报率,是一种有效的检测LDoS攻击的方法。

    基于感知线性预测和SVDD的LDoS攻击检测方法

    公开(公告)号:CN114095222A

    公开(公告)日:2022-02-25

    申请号:CN202111337559.X

    申请日:2021-11-10

    Applicant: 湖南大学

    Abstract: 本发明公开了一种基于感知线性预测和SVDD的LDoS攻击检测方法,属于计算机网络安全领域。其中所述的方法包括:以相同的采样间隔对到达路由器的数据包数量进行采样,并用分帧和加窗的方式对采样得到的流量数据进行预处理得到短时频谱。对预处理后得到的短时频谱进行短时傅里叶变换得到短时能量谱,再对短时能量谱进行临界频带分析,然后进行感知线性预测分析,提取感知线性预测系数作为感知线性预测特征。用感知线性预测特征训练集成SVDD分类器构建LDoS攻击检测模型准确区分正常流量和LDoS攻击流量,对网络中的LDoS攻击进行检测。本发明提出的基于感知线性预测和SVDD算法的LDoS攻击检测方法具有较高的准确率和较低的误报率,是一种有效的检测LDoS攻击的方法。

    一种基于Elman神经网络的低速率拒绝服务攻击检测方法

    公开(公告)号:CN110572413A

    公开(公告)日:2019-12-13

    申请号:CN201910920718.5

    申请日:2019-09-27

    Applicant: 湖南大学

    Abstract: 本发明公开了一种基于Elman神经网络的低速率拒绝服务(LDoS)攻击检测方法,属于网络安全领域。其中所述方法包括:获取网络中经过关键路由器的数据报文形成样本原始值,以固定时间将样本原始值划分为多个检测窗口,以检测窗口为单位进行检测,对该检测窗口内数据报文进行原始数据分析,根据分析数据报文的波动特征和形态变化,提取方差、标准差、极差和平均值四个特征值;根据提取的特征值,添加两类标签区分发生LDoS攻击和未发生LDoS攻击两种类别,采用Elman神经网络,进行训练分类;输入待检测数据到训练好的Elman神经网络进行检测。依据神经网络输出结果与标签对比判定,判断该检测窗口内是否发生LDoS攻击。本发明提出的基于Elman神经网络的检测方法能高效、快速、自适应地检测LDoS攻击。

    一种针对慢速拒绝服务攻击的综合检测方法

    公开(公告)号:CN109150838A

    公开(公告)日:2019-01-04

    申请号:CN201810820673.X

    申请日:2018-07-24

    Applicant: 湖南大学

    CPC classification number: H04L63/1458 H04L63/1416

    Abstract: 本发明公开了一种针对慢速拒绝服务攻击的综合检测方法,属于网络安全领域。其中所述方法包括:实时获取检测网络的TCP流量,对单位时间内的TCP流量进行采样处理,形成样本原始值,该方法采用两次检测的方式,首先通过分析该单位时间内样本原始值的波动形态的异常特征并计算波动形态异常率,通过相关判定准则进行初步判定检测;然后采用AEWMA算法平滑噪声,形成样本分析值,通过分析该单位时间内样本分析值的分布形态的异常特征并计算异常分析点概率和异常分析组概率,依据相关判定准则进行最终判定检测。本发明提出的两次检测综合的检测方法能高效、快速、自适应地检测慢速拒绝服务攻击。

Patent Agency Ranking