-
公开(公告)号:CN111444501B
公开(公告)日:2023-04-18
申请号:CN202010183134.7
申请日:2020-03-16
Applicant: 湖南大学
IPC: G06F21/55 , G06F18/214
Abstract: 本发明公开了一种基于梅尔倒谱与半空间森林结合的慢速拒绝服务(LDoS)攻击检测方法,属于网络安全领域。其中所述方法包括:实时获取单位时间片内待检测网络的混合流量数据,提取网络流量在梅尔频率上的倒谱系数,将其作为度量正常流量和LDoS攻击流量的初始特征;然后采用互信息特征选择算法对已提取的初始特征进行优化选择;最后将择优后的特征输入到基于数据质量异常检测的半空间森林模型,通过该模型对正常流量和LDoS攻击流量进行准确区分,从而达到检测LDoS攻击的目的。本发明提出的梅尔倒谱与半空间森林结合的检测方法能高效、快速、自适应地检测LDoS攻击。
-
公开(公告)号:CN115664765A
公开(公告)日:2023-01-31
申请号:CN202211284363.3
申请日:2022-10-20
Applicant: 湖南大学重庆研究院
IPC: H04L9/40 , H04L45/655 , H04L45/74
Abstract: 本发明公开了一种基于排序学习的SDN数据平面低速率DDoS攻击缓解方法,属于网络安全领域。所述方法包括:基于OpenvSwitch交换机,轮询SDN交换机流表并提取流表项,形成原始数据;提取流表项的特征六元组和标识,结合源IP地址等信息,为流表项标记相关性标签和查询ID;采用集成学习XGBoost方法,基于Pairwise建立流表项排序学习模型,并部署在SDN交换机上;交换机上的攻击缓解系统实时监控是否发生了由DDoS攻击导致的流表溢出;若发生攻击,排序学习模型预测每条流表项的排序分数,并按排序分数降序重排流表、设定攻击检测阈值,最后自上而下遍历流表项,决定哪些流表项应被删除。本发明对数据平面低速率DDoS攻击检测率高,误报、漏报率低,自适应性强,缓解迅速、有效。
-
公开(公告)号:CN112804248B
公开(公告)日:2022-02-01
申请号:CN202110120506.6
申请日:2021-01-28
Applicant: 湖南大学
Abstract: 本发明公开了一种基于频域特征融合的LDoS攻击检测方法,属于计算机网络安全领域。其中所述方法包括:首先,获取路由器中的网络数据报文,得到样本序列;然后,基于离散傅里叶变换和离散小波变换将样本序列从时间域变换到频率域,充分地提取样本序列的频域特征;接着,采用线性判别分析将提取的频域特征进行特征融合得到判定特征,从而能够显著提高特征的分类性能;最后,将判定特征输入到事先训练好的单类分类异常检测模型,并根据异常检测模型的输出,对该单位时间内的网络数据报文进行判定检测,若异常检测模型的输出为‑1,则判定该单位时间内网络中发生了LDoS攻击。本发明提出的基于频域特征融合的检测方法能高效、快速、准确地检测LDoS攻击。
-
公开(公告)号:CN111600878A
公开(公告)日:2020-08-28
申请号:CN202010406757.6
申请日:2020-05-14
Applicant: 湖南大学
Abstract: 本发明公开了一种基于多特征自适应融合异常检测算法(MAF-ADM)的低速率拒绝服务攻击检测方法,属于计算机网络安全领域。其中所述方法包括四个步骤,分别是样本采集、特征提取、异常检测模型构建和异常判定。首先在瓶颈链路中设置样本采集点收集网络流量数据并从中提取TCP流量数据。然后对TCP流量数据进行短时傅里叶变换来获取其对应的时频分布,选取其中重要的统计特征作为检测依据。最后通过子模型构建、加权融合和平滑处理与阈值计算三个模块构建异常检测模型,以上述异常检测模型的输出为依据判断是否发生低速率拒绝服务攻击。本发明提出的低速率拒绝服务攻击检测方法能克服复杂网络环境中偶然因素所带来的检测性能下降等问题,具有较好的自适应性、较高的准确率以及较低的误报率和漏报率。
-
公开(公告)号:CN112804248A
公开(公告)日:2021-05-14
申请号:CN202110120506.6
申请日:2021-01-28
Applicant: 湖南大学
Abstract: 本发明公开了一种基于频域特征融合的LDoS攻击检测方法,属于计算机网络安全领域。其中所述方法包括:首先,获取路由器中的网络数据报文,得到样本序列;然后,基于离散傅里叶变换和离散小波变换将样本序列从时间域变换到频率域,充分地提取样本序列的频域特征;接着,采用线性判别分析将提取的频域特征进行特征融合得到判定特征,从而能够显著提高特征的分类性能;最后,将判定特征输入到事先训练好的单类分类异常检测模型,并根据异常检测模型的输出,对该单位时间内的网络数据报文进行判定检测,若异常检测模型的输出为‑1,则判定该单位时间内网络中发生了LDoS攻击。本发明提出的基于频域特征融合的检测方法能高效、快速、准确地检测LDoS攻击。
-
公开(公告)号:CN112291193A
公开(公告)日:2021-01-29
申请号:CN202011015908.1
申请日:2020-09-24
Applicant: 湖南大学
Abstract: 本发明公开了一种基于NCS‑SVM的慢速拒绝服务(LDoS)攻击检测方法,属于网络安全领域。其中所述方法包括:以一个时间窗口为检测单位,实时获取检测网络的TCP流量,对该时间窗口内TCP流量进行原始数据解析,采用逆向云生成器将时间窗口内的TCP流量映射到云空间中生成正态云模型,并使用其期望曲线刻画TCP流量的分布形态特征;根据事先利用无攻击的TCP流量生成的基准云模型作为计算相似度的基准,定量计算该时间窗口内TCP流量对应的云模型与基准云模型之间的相似度,并将相似度输入到预先训练的支持向量机分类器中,根据相关判定准则,是否存在因LDoS攻击导致的TCP流量分布形态异常,导致该时间窗口云模型和基准云模型相似度远小于1,来检测该时间窗口内是否受到LDoS攻击。本发明提出的基于TCP流量分布形态特征的检测方法能高效、快速地检测LDoS攻击。
-
公开(公告)号:CN112202791A
公开(公告)日:2021-01-08
申请号:CN202011068857.9
申请日:2020-09-28
Applicant: 湖南大学
Abstract: 本发明公开了一种基于P‑F方法的软件定义网络(SDN)慢速拒绝服务攻击检测方法,属于网络安全领域。其中所述方法包括:实时获取SDN交换机中的流表信息,基于OpenFlow协议,对单位时间窗口内的流量条目及其数据进行采样统计;提取网络特征值,并依据网络协议种类,将所提取的特征值分为攻击效果P与攻击特征F两组;根据P与F两组特征值,利用梯度提升树‑逻辑回归(GBDT‑LR)与双滑片‑K峰值(DSS‑KB)算法分别构建基于P与F的检测模型;根据待测时间窗口内的网络数据,基于两种检测模型检测结论的综合分析,判定待检测时间窗口内是否同时出现网络形态异常和LDoS攻击流,从而检测该窗口内是否发生LDoS攻击。本发明提出的P‑F方法对于LDoS攻击检测率高,误报、漏报率低,自适应性强,且该方法能运行在SDN控制器上,针对SDN环境中的LDoS攻击,能够实现精准、实时的检测。
-
公开(公告)号:CN111294362A
公开(公告)日:2020-06-16
申请号:CN202010183854.3
申请日:2020-03-16
Applicant: 湖南大学
IPC: H04L29/06
Abstract: 本发明公开了一种基于分形残差的LDoS攻击实时检测方法,属于网络安全领域。其中所述方法包括:获取单位时长内检测网络的数据流量,基于滑动窗口的概念,对获取到的数据流量进行处理,获得数据流量的Hurst滑动窗口。根据R/S算法分析计算Hurst滑动窗口的分形值,使用拟合残差公式,计算Hurst滑动窗口的分形残差值,将待测网络数据流量的分形残差值与变异系数共同作用作为决策特征值,与事先训练出来的决策阈值进行比较,依据相关判定准则判定,是否存在因LDoS攻击而导致的网络流量的分形残差值异常,从而检测该Hurst滑动窗口内是否发生LDoS攻击。本发明提出的基于分形残差的LDoS攻击实时检测方法,误报率和漏报率较低,检测准确度较高,实时性好。
-
公开(公告)号:CN110661802A
公开(公告)日:2020-01-07
申请号:CN201910920902.X
申请日:2019-09-27
Applicant: 湖南大学
IPC: H04L29/06
Abstract: 本发明公开了一种基于PCA-SVM算法的慢速拒绝服务(LDoS)攻击检测方法,属于网络安全领域。其中所述方法包括:对网络中某一时间段内的数据流量信息进行实时采样,提取其中的TCP流量并划分时间片;采用主成分分析法(PCA)对原始样本矩阵进行特征选择,提取出对分类最有益的特征得到主成分样本矩阵;对于主成分样本矩阵中的每一个时间片,根据是否受到LDoS攻击时TCP流量表现出的不同特点,利用支持向量机(SVM)算法训练得到的决策函数作为分类模型进行特征映射;根据决策函数计算得到的不同标签值,将每个时间片分类到存在LDoS攻击的类别或者不存在LDoS攻击的类别中,从而实现对于LDoS攻击的检测。本发明提出的基于PCA-SVM算法的检测方法能准确、高效、快速、自适应地检测LDoS攻击。
-
-
-
-
-
-
-
-