平行语料的生成方法及装置和无监督同义转写方法及装置

    公开(公告)号:CN115809658A

    公开(公告)日:2023-03-17

    申请号:CN202211497311.4

    申请日:2022-11-25

    Applicant: 清华大学

    Abstract: 本发明实施例提供一种平行语料的生成方法及装置和无监督同义转写方法及装置,其中平行语料的生成方法包括:获取待转写语料和所述待转写语料的上下文;基于所述待转写语料获得关键词集合;将所述关键词集合和所述待转写语料的上下文输入至预训练语言模型,获得的所述预训练语言模型输出的至少一个候选同义转写语料;对每个所述候选同义转写语料进行评价,基于评价结果确定目标同义转写语料。无监督同义转写方法包括:获取待转写语句;将所述待转写语句输入至同义转写模型,获得所述同义转写模型输出的同义转写句;其中,所述同义转写模型是基于平行语料对训练得到的。本发明实施例能够获得优秀的同义转写句。

    三元组作为节点的知识图谱的表示学习方法、装置及设备

    公开(公告)号:CN114661916A

    公开(公告)日:2022-06-24

    申请号:CN202210220916.2

    申请日:2022-03-08

    Applicant: 清华大学

    Abstract: 本发明提供一种三元组作为节点的知识图谱的表示学习方法、装置及设备,属于机器学习技术领域,方法通过初始化预测模型的参数,参数包括知识图谱中实体和关系的向量表示,知识图谱是三元组作为节点所构成的;遍历知识图谱中的每个三元组,确定预测模型针对每个三元组的损失;基于每个三元组的损失,利用优化器对实体和关系的向量表示进行优化,由于知识图谱本身是以三元组作为节点所构成的,该类型的知识图谱可以极大地丰富知识图谱的表示能力,且基于该知识图谱的表示学习方法,能够很好的对这类知识图谱进行表示学习。

Patent Agency Ranking