一种基于DSLNet网络的车辆检测方法及装置

    公开(公告)号:CN116030245A

    公开(公告)日:2023-04-28

    申请号:CN202310032957.3

    申请日:2023-01-10

    Abstract: 本发明公开了一种基于DSLNet网络的车辆检测方法及装置,对预先获取的交通车辆原始图像进行预处理,分为训练图像和测试图像;构建DSLNet车辆目标检测网络;包括主干网络模块、UDM加强特征提取模块以及YoloHead目标检测头模块;主干网络模块用于提取车辆的特征信息,UDM加强特征提取模块进一步加强特征的提取能力,YoloHead目标检测头模块用于检测目标对象;将事先分配好的训练图像输入到DSLNet车辆目标检测网络中进行训练;将测试图像输入到训练好的DSLNet车辆目标检测网络中,进行评估。本发明提出的DSLNet网络,结构简单,采用大卷积和小卷积组合的方式进行特征提取,并采用深度可分离卷积来降低参数量,能够实现道路图像中实时的车辆的准确识别,且识别准确率较高。

    一种基于MSA-Yolov5的恶劣天气下车辆检测方法及装置

    公开(公告)号:CN115272987A

    公开(公告)日:2022-11-01

    申请号:CN202210794742.0

    申请日:2022-07-07

    Abstract: 本发明公开了一种基于MSA‑Yolov5的恶劣天气下车辆检测方法及装置,首先,将DAWN数据集划分为训练集与测试集,并进行预处理;其次,构建MSA‑Yolov5模型,包括Backbone模块、Neck模块以及Prediction模块;其中Backbone模块为MSA‑ResBlock,包括Focus网络、SCBAM模块和ResBlock模块;首先用SCBAM模块对恶劣天气下,模糊场景中的车辆、行人目标进行特征强化;然后通过多尺度特征融合,使用GIoU算法作为边界框损失函数,使用FocalLoss降低预测框内正负样本的不平衡问题;最后检测出恶劣天气下车辆、行人的位置信息和标签信息,并得出检测的精确度。本发明具有图像校正的计算量减小、检测流程精简、网络的识别精度高的特点,可以对恶劣天气下的车辆、行人进行检测,并且具有检测速度快、模型小、准确率高的优点。

Patent Agency Ranking