-
公开(公告)号:CN105446484B
公开(公告)日:2018-06-19
申请号:CN201510801279.8
申请日:2015-11-19
Applicant: 浙江大学
IPC: G06F3/01
Abstract: 本发明公开了一种基于隐马尔科夫模型的肌电信号手势识别方法,步骤如下:对手势肌电信号进行平滑滤;使用滑动窗口对每个窗口数据提取一种多特征特征集,对特征向量进行归一化和最小冗余最大相关性准则的特征降维;设计三种隐马尔可夫模型分类器,并对其参数进行优化;使用隐马尔科夫分类器模型参数和训练数据训练得到分类器模型;将测试数据输入到训练好的模型中,根据每个类别隐马尔可夫模型输出的似然,最大似然对应的类别即为识别的类别。本发明基于新特征集对三种常用隐马尔可夫模型分类器进行识别。使用基于隐马尔可夫模型的分类方法能够准确地识别同一被试的不同手势,较准确地识别不同被试间手势。
-
公开(公告)号:CN105654037A
公开(公告)日:2016-06-08
申请号:CN201510971796.X
申请日:2015-12-21
Applicant: 浙江大学
CPC classification number: G06K9/00503 , G06F3/015 , G06F3/017 , G06K9/00523 , G06K9/00536 , G06N3/084
Abstract: 本发明公开了一种基于深度学习和特征图像的肌电信号手势识别方法,首先对采集手势肌电原始信号进行预处理;其次进行特征提取,通过不同尺寸和概率的采样窗口提取出包括时域、时频域的特征,并将这些特征转换成图像;然后将特征图像和其对应的动作标签一起输入到深度神经网络中进行训练,得到网络模型;最后将测试数据和训练得到的网络模型输入深度卷积神经网络中进行预测,得到每段动作所有图像的预测标签,将这些标签按照多数同意规则进行投票,票数最高者为该段动作类别。本发明基于特征图像对深度卷积神经网络分类器进行识别。使用基于深度卷积神经网络的分类方法能够准确地识别同一被试的不同手势,较准确地识别不同被试间手势。
-
公开(公告)号:CN105608432A
公开(公告)日:2016-05-25
申请号:CN201510973702.2
申请日:2015-12-21
Applicant: 浙江大学
IPC: G06K9/00
CPC classification number: G06K9/00503 , G06K9/00536
Abstract: 本发明公开了一种基于瞬时肌电信号的手势识别方法。在训练阶段,首先对阵列电极采集的瞬时肌电信号进行预处理,并将其按照电极位置排布成瞬时肌电图像;然后使用瞬时肌电图像及其对应的手势标签训练图像分类器,例如深度卷积神经网络,得到网络模型参数;在测试阶段,首先对阵列电极采集的待识别的瞬时肌电信号进行预处理,并将其按照电极位置排布成瞬时肌电图像;然后将训练好的模型参数带入到分类器中识别瞬时肌电信号对应的手势标签。本发明基于瞬时肌电图像和图像分类方法,可以快速准确地识别手势。国内外尚无文献使用瞬时肌电信号进行手势识别。
-
-