-
公开(公告)号:CN111563380A
公开(公告)日:2020-08-21
申请号:CN201910075530.5
申请日:2019-01-25
Applicant: 浙江大学
IPC: G06F40/295
Abstract: 本申请公开了一种命名实体识别方法及其装置,所述方法包括:基于文本中的每个元素的结构信息,将所述文本的每个元素转换为包括第一向量的第一向量组,其中,第一向量包括每个元素的结构信息向量;将所述第一向量组中的第一向量分别输入到机器学习模型组件,获取与所述文本对应的表达向量,其中,所述机器学习模型组件根据多个训练文本向量以及与所述多个训练文本向量对应的多个表达向量之间的对应关系进行训练得到的;利用所述表达向量,识别与所述文本对应的命名实体标签,至少利用所述表达向量,识别与所述文本对应的命名实体标签。采用本申请,可利用文本的结构信息,获取所述文本对应的预测标签,从而能够利用独有的结构,提高命名实体识别的准确率。
-
公开(公告)号:CN110377792A
公开(公告)日:2019-10-25
申请号:CN201910516683.9
申请日:2019-06-14
Applicant: 浙江大学
Abstract: 本发明公开了一种利用跨模型交互网络解决以问题为基础的视频片段抽取任务的方法。主要包括如下步骤:1)针对问题语句与视频帧,利用语义图像卷积网络、多头自注意力模块、与多步骤跨模型交互模块获取视频帧的跨模型语义表达。2)对获得的视频帧的跨模型语义表达,计算损失函数并训练模型,利用训练后的跨模型交互网络,对视频进行以问题为基础的片段抽取。相比于一般的视频片段抽取解决方案,本发明对多种有效信息进行综合利用。本发明在以问题为基础的视频片段抽取任务中所取得的效果相比于传统的方法更好。
-
公开(公告)号:CN109255020A
公开(公告)日:2019-01-22
申请号:CN201811057115.9
申请日:2018-09-11
Applicant: 浙江大学
IPC: G06F16/332 , G06N3/04
Abstract: 本发明公开了一种利用卷积对话生成模型解决对话生成任务的方法,包括如下步骤:针对于所要生成的对话的下一个词的上文,得到的单词的含义向量与单词的位置向量,相加,获取单词的综合表达向量;输入到结合了卷积层与门式线性单元结合的编码网络,获取上文的综合表达;将上文最后一个单词转换成最后单词的含义向量,并结合最后单词的位置向量,两者相加获取最后单词的综合表达;输入到结合了卷积层与门式线性单元结合的编码网络,并结合上文的综合表达,获取下一个要生成单词的表达。本发明利用了卷积对话生成模型,能够克服现有技术中使用循环神经网络导致无法利用GPU并行特点,且循环神经网络会导致梯度消失的问题。
-
公开(公告)号:CN108228833A
公开(公告)日:2018-06-29
申请号:CN201810008053.6
申请日:2018-01-04
Applicant: 浙江大学
Abstract: 本发明公开了一种利用用户倾向性学习解决社区项目推荐任务的方法。主要包括如下步骤:1)针对于社交网络中的项目,用户,生成项目的表达矩阵与拉普拉斯矩阵。利用每次收集的用户项目排名信息,迭代产生用户倾向性矩阵2)对于生成的用户倾向性矩阵与项目表达矩阵,产生对于用户的项目推荐。相比于一般的项目推荐解决方案,本发明使用了项目特征及用户之间的相互关系,同时迭代地使用多次用户对于项目的排序信息,则能够更准确地反映用户对于项目的排序特点,同时时间消耗低。本发明在社区项目推荐问题中所取得的效果相比于传统的方法更好。
-
公开(公告)号:CN111613215B
公开(公告)日:2023-06-23
申请号:CN201910132335.1
申请日:2019-02-22
Applicant: 浙江大学
Abstract: 本申请公开了一种语音识别的方法及其装置,所述方法包括利用编码器获取与输入的语音数据对应的概率分布向量序列;将所述概率分布向量序列输入到语言模型组件,获取语音识别信息,其中,所述语言模型组件至少包括基于前缀束搜索的CTC模型组件。利用本申请,可提高语音识别的准确性。
-
公开(公告)号:CN110377711B
公开(公告)日:2022-04-01
申请号:CN201910585462.7
申请日:2019-07-01
Applicant: 浙江大学
IPC: G06F16/332 , G06F16/738 , G06F16/783
Abstract: 本发明公开了一种利用分层卷积自注意力网络解决开放式长视频问答任务的方法。主要包括如下步骤:1)针对视频与问题,分层卷积自注意力编码器网络获取多层视频语义表达。2)对获得的视频帧的多层视频语义表达,计算损失函数并训练模型,利用训练后的分层卷积自注意力网络,对开放式长视频问答任务进行回答语句生成。相比于一般的开放式长视频问答任务解决方案,本发明对多种有效信息进行综合利用。本发明在开放式长视频问答任务中所取得的效果相比于传统的方法更好。
-
公开(公告)号:CN108363724B
公开(公告)日:2021-12-10
申请号:CN201810008875.4
申请日:2018-01-04
Applicant: 浙江大学
IPC: G06F16/2458
Abstract: 本发明公开了一种利用图像正则化及数据重建解决特征提取任务的方法。主要包括如下步骤:1)针对于一组数据点,构建其权重矩阵及对应的拉普拉斯矩阵。2)随机初始化特征提取矩阵与重建系数矩阵,迭代更新特征提取矩阵与重建系数矩阵,得到最终收敛的特征提取矩阵作为特征提取的依据。相比于一般的项目推荐解决方案,本发明使用了图像正则化与数据重建相结合的方法,则能够提取出更有效的数据特征。本发明在数据特征提取问题中所取得的效果相比于传统的方法更好。
-
公开(公告)号:CN109255002B
公开(公告)日:2021-08-27
申请号:CN201811057114.4
申请日:2018-09-11
Applicant: 浙江大学
IPC: G06F16/28
Abstract: 本发明公开了一种利用关系路径挖掘解决知识图谱对齐任务的方法。主要包括如下步骤:1)利用知识翻译模型、线性映射函数、对齐节点对与对齐三元组获取表示知识图谱对齐任务的损失函数。2)利用损失函数下降训练,完成关系路径挖掘,实现知识图谱对齐任务。相比于其他的知识图谱对齐任务解决方法,本发明使用到了知识图谱中的实体与关系的对齐方式。本发明在知识图谱对齐任务中所取得的效果相比于传统的方法更好。
-
公开(公告)号:CN107766447B
公开(公告)日:2021-01-12
申请号:CN201710874931.8
申请日:2017-09-25
Applicant: 浙江大学
IPC: G06F16/783 , G06F16/332 , G06F16/33 , G06K9/00 , G06K9/62
Abstract: 本发明公开了一种利用多层注意力网络机制解决视频问答的方法。主要包括如下步骤:1)针对于一组视频,利用预训练好的卷积神经网络,获得帧级别及分段级别视频表达。2)使用问题单词级别的注意力网络机制,得到针对问题单词级别的帧级别及分段级别视频表达。3)使用问题级别的时间注意力机制,得到与问题相关的帧级别及分段级别视频表达。4)利用问题级别的融合注意力网络机制,得到问题相关的联合视频表达。5)利用所得联合视频表达,获取针对视频所问问题答案。相比于一般视频问答解决方案,本发明利用多层注意力机制,能够更准确地反映视频和问题特性,产生更加符合的答案。本发明在视频问答中所取得的效果相比于传统方法更好。
-
公开(公告)号:CN111599363A
公开(公告)日:2020-08-28
申请号:CN201910104761.4
申请日:2019-02-01
Applicant: 浙江大学
Abstract: 本申请公开了一种语音识别的方法及其装置,所述方法包括:将与获取的语音对应的声谱图输入到语音模型,获取与所述语音对应的多个候选分句;利用多层评价模型确定与所述多个候选分句中每个候选分句对应的候选值;将候选值最高的候选分句确定为目标识别文本。采用本申请,可利用多层评价模型对利用语音模型输出的多个候选分句执行量化处理,从而能够更准确且直观地确定目标识别文本。
-
-
-
-
-
-
-
-
-