混合时空平面局部二值模式的自发微表情定位方法

    公开(公告)号:CN109800771B

    公开(公告)日:2021-03-05

    申请号:CN201910089341.3

    申请日:2019-01-30

    Abstract: 本发明公开一种混合时空平面局部二值模式的自发微表情定位方法。本发明根据自发微表情视频中连续帧的相关性,通过精细匹配实现了像素级人脸区域对齐,从而对头部偏移等干扰具有较强的抗干扰能力。同时在空间轴平面提取扇形区域特征,并在时间轴提取去冗余的线性特征,既减少了特征点冗余计算,又通过非线性特征融合的方式结合时空特征,形成更完备的特征表示,因此能更加鲁棒地表示自发微表情,提高了自发微表情视频中自发微表情定位精确率。

    一种基于特征融合的心力衰竭合并左束支传导阻滞分类方法

    公开(公告)号:CN119887661A

    公开(公告)日:2025-04-25

    申请号:CN202411933181.3

    申请日:2024-12-26

    Abstract: 本发明公开了一种基于特征融合的心力衰竭合并左束支传导阻滞分类方法,分类方法通过利用心脏磁共振图像,提取放射组学特征和深度学习特征,进行特征融合与选择,以及利用机器学习算法构建分类模型,并以筛选后的融合特征做为输入,该方法结合了深度学习在图像处理方面的优势与机器学习在分类任务中的高效性,通过结合放射组学特征和深度学习特征,能够更全面、准确地反映心脏图像的复杂信息,而利用自动化和智能化的特征提取和分类方法,能够快速处理和分析大量的医学影像数据,实现了对心力衰竭合并左束支传导阻滞的准确分类,本发明具有更高的分类准确率和更强的鲁棒性,在医学图像分类领域中,有助于提高医疗服务的效率和质量。

    基于自适应去除过渡帧深度网络的微表情检测方法

    公开(公告)号:CN111325131A

    公开(公告)日:2020-06-23

    申请号:CN202010092959.8

    申请日:2020-02-14

    Abstract: 本发明公开了一种基于自适应去除过渡帧深度网络的微表情检测方法。本发明包括网络构造、网络训练和微表情检测,其中所述的网络训练中首先对原始视频进行数据预处理;然后使用自适应去除过渡帧方法去除过渡帧;最后将去除了过渡帧的微表情帧和中性帧样本输入MesNet网络进行训练。本发明所构建的MesNet本质是一个二分类网络,检测微表情帧不依赖帧时序关系,因此MesNet不仅可以从微表情数据库完整视频中检测微表情帧,也可以从给定的任意帧集合中检测微表情帧,还可以判断给定的单独一帧是否为微表情帧。

Patent Agency Ranking