-
公开(公告)号:CN102916202B
公开(公告)日:2015-12-16
申请号:CN201210424910.3
申请日:2012-10-30
Applicant: 杭州电子科技大学
Abstract: 一种直接硼氢化钠燃料电池阳极,以泡沫镍为集流体,泡沫镍的表面分布有Pd纳米短棒,该Pd纳米短棒作为燃料电池的阳极催化剂。阳极的原位制备方法包括:以泡沫镍作为阳极催化剂的载体和集流体装在阳极极板的一侧;以Pt/C催化剂为阴极装配成直接硼氢化钠燃料电池,将电池升温到80oC;在阳极一侧先通入混合液并保持在阳极流场内,向阳极流场缓慢通入抗坏血酸溶液或者硼氢化钠溶液,混合液与抗坏血酸或者硼氢化钠溶液反应使得阳极流场内的Pd离子还原并依附于泡沫镍表面生长形成Pd纳米短棒;通入去离子水清洗阳极流场,获取燃料电池阳极。本发明具有阳极的电子传导稳定、结合力好、催化空间利用率高的优点。
-
公开(公告)号:CN102931417A
公开(公告)日:2013-02-13
申请号:CN201210426139.3
申请日:2012-10-30
Applicant: 杭州电子科技大学
Abstract: 一种直接硼氢化钠燃料电池阳极,泡沫镍集流体上布满蚀坑,蚀坑的尺寸在纳米量级,每个蚀坑内均生长有Pd纳米棒或者Pd纳米颗粒,该Pd纳米棒或者Pd纳米颗粒作为燃料电池的阳极催化剂。阳极结构制造方法包括将泡沫镍放置于稀酸溶液一段时间,使泡沫镍的金属Ni表面产生蚀坑,蚀坑直径和深度均在纳米数量级,之后取出,洗净,干燥;将上述泡沫镍置于聚乙烯吡咯烷酮、氯钯酸钠、溴化钾、乙醇和还原剂的混合液在10~200oC保持反应0.1~12h;将泡沫镍取出,洗净,干燥,裁剪为适合的尺寸作为阳极。本发明具有电子传导稳定,结合力好和催化剂空间利用率高的优点。
-
公开(公告)号:CN102916202A
公开(公告)日:2013-02-06
申请号:CN201210424910.3
申请日:2012-10-30
Applicant: 杭州电子科技大学
Abstract: 一种直接硼氢化钠燃料电池阳极,以泡沫镍为集流体,泡沫镍的表面分布有Pd纳米短棒,该Pd纳米短棒作为燃料电池的阳极催化剂。阳极的原位制备方法包括:以泡沫镍作为阳极催化剂的载体和集流体装在阳极极板的一侧;以Pt/C催化剂为阴极装配成直接硼氢化钠燃料电池,将电池升温到80oC;在阳极一侧先通入混合液并保持在阳极流场内,向阳极流场缓慢通入抗坏血酸溶液或者硼氢化钠溶液,混合液与抗坏血酸或者硼氢化钠溶液反应使得阳极流场内的Pd离子还原并依附于泡沫镍表面生长形成Pd纳米短棒;通入去离子水清洗阳极流场,获取燃料电池阳极。本发明具有阳极的电子传导稳定、结合力好、催化空间利用率高的优点。
-
公开(公告)号:CN107482240A
公开(公告)日:2017-12-15
申请号:CN201710607200.7
申请日:2017-07-24
Applicant: 杭州电子科技大学
IPC: H01M8/1041 , H01M8/1067 , H01M8/1072 , H01M8/1009
Abstract: 本发明公开了一种核壳结构二元过渡金属掺杂碱性阴离子交换膜及其应用。在该碱性阴离子交换膜的基体中均匀分布呈核壳结构的二元过渡金属离子,其中核为二价Cu离子,壳为具有催化特性的二价Co或Ni离子。本发明利用了不同过渡金属离子在有机物中分散性不同,利用分散度高的过渡金属二价Cu离子在有机物中形成细小晶核,吸引另一掺杂的过渡金属离子通过异相形核生长,本发明的核壳结构二元过渡金属离子掺杂的碱性阴离子交换膜,其核壳结构提高膜的催化特性,有效降低燃料电池的燃料渗透率,提高了膜的离子导通率。将本发明的阴离子交换膜应用于组装成的燃料电池,表现出优异的发电性能。
-
公开(公告)号:CN105428676B
公开(公告)日:2017-10-31
申请号:CN201510481082.0
申请日:2015-08-07
Applicant: 杭州电子科技大学
IPC: H01M8/10 , H01M4/86 , H01M4/90 , H01M8/0202 , H01M8/023 , H01M8/0232 , H01M8/0247
Abstract: 本发明公开了一种用于原位拉曼光谱测试的质子交换膜燃料电池的阴极结构,该阴极结构包括:质子交换膜、催化剂层以及金属网状集流体;其中催化剂层涂覆于质子交换膜表面,金属网状集流体压贴在催化剂层上;金属网状集流体为多孔网状结构,可以是金网、不锈钢网、镍网或银网。本发明还公开了应用该阴极结构进行质子交换膜燃料电池阴极催化反应的原位拉曼光谱测试方法。本发明解决了传统质子交换膜燃料电池的电极结构无法实现原位拉曼光谱测试的技术问题;通过原位拉曼光谱测试,实现原位地、实时地获得阴极催化反应信息;且本发明的阴极结构能够进行Fe、Co、Ni、Pt、Au等各种催化剂的原位拉曼测试。
-
公开(公告)号:CN104332636A
公开(公告)日:2015-02-04
申请号:CN201410481652.1
申请日:2014-09-20
Applicant: 杭州电子科技大学
Abstract: 本发明提出一种多孔石墨烯负载过渡金属纳米复合催化剂的制备方法。该方法是将竹子、松木的屑粉或者边角料等在缺氧气氛下高温煅烧,然后浸没到含过渡金属离子溶液中保持1~1000分钟后取出,缺氧气氛高温煅烧;再浸没到强氧化性溶液,使竹炭或木炭石墨结构充分氧化为氧化石墨;然后取出置于缺氧气氛下500~1000℃高温煅烧0.01~0.5小时即可。本发明所制备的石墨烯为多孔结构,具备良好的透水透气特性,能实现电极反应所需要的快速质量传导要求;过渡金属纳米颗粒牢牢地附着在石墨烯孔道内壁,与传导进来的水、气和电子反应,构成无数的微三相反应区,极大地增加了反应活性面积,具备优异的催化反应活性。
-
-
公开(公告)号:CN102760889B
公开(公告)日:2014-06-11
申请号:CN201210263788.6
申请日:2012-07-29
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种直接硼氢化钠燃料电池用Co/N/C阴极的规模化工业生产技术,该技术包括多孔石墨烯载体的制备、钴化合物的担载和氮掺杂的原位处理以及膜组件的制备。使用本发明提供的技术可以实现Co/N/C中石墨烯片层的可控生长和阴极的连续生产。避免传统工艺的憎水处理环节,显著简化了燃料电池阴极的制作流程,对促进燃料电池实用化具有重要意义。
-
-
-
-
-
-
-