一种基于Cycle-GAN的图像加雾方法

    公开(公告)号:CN117408891B

    公开(公告)日:2024-03-15

    申请号:CN202311714540.1

    申请日:2023-12-14

    Applicant: 暨南大学

    Abstract: 本发明涉及计算机视觉的图像分析技术领域,特别是涉及一种基于Cycle‑GAN的图像加雾方法,包括:获取待加雾图像;将所述待加雾图像输入预设的图像生成模型中,输出加雾后的目标图像,其中,所述图像生成模型由训练集训练获得,所述训练集包括无雾的图像数据和文本数据、有雾的图像数据和文本数据,所述图像生成模型采用Cycle‑GAN网络构建。本发明通过输入待处理的图像,将图像与文本信息特征融合,输入在多模态扩散文本语义约束下的Cycle‑GAN网络中生成目标图像,提升图像雾气效果,生成更符合实际效果和目标需求的图像。

    基于YOLOv5和MobileNetV2的车辆型号识别方法

    公开(公告)号:CN113743233A

    公开(公告)日:2021-12-03

    申请号:CN202110912415.6

    申请日:2021-08-10

    Applicant: 暨南大学

    Abstract: 本发明公开了基于YOLOv5和MobileNetV2的车辆型号识别方法,包括以下步骤:S1、获取含车辆型号标签的公开车辆图片数据集;S2、对图片数据集按YOLOv5方式打标签;S3、为图片进行预处理;S4、进行YOLOv5训练,反复优化得到模型参数;S5、对原始图片数据集按YOLOv5标签的锚框数据进行裁剪,尽可能裁剪至图片仅含车辆信息;S6、修改MobileNetV2模型,拼接训练好的YOLOv5模型和修改后的MobileNetV2模型;S7、使用标签为车辆型号的原始数据集,预处理后对新拼接得到的模型进行训练,反复优化提升模型性能,得到优化训练完成的识别模型并将其用于实际车辆型号识别。本发明方法解决现有模型识别速率低,不足以满足交通系统的实时性、高效性以及在条件受限的情况下识别的准确率偏低的问题。

Patent Agency Ranking