-
公开(公告)号:CN115998709B
公开(公告)日:2024-04-12
申请号:CN202211045471.5
申请日:2022-08-30
Applicant: 暨南大学
Abstract: 本发明提供了一种膜融合纳米核酸载体及其制备方法与应用。本发明设计的膜融合纳米核酸载体利用通过膜融合的方式向细胞质递送核酸分子。膜融合递送方式绕过了经典的细胞内吞途径,由此避免了核酸分子在进入细胞内体或溶酶体后被核酸酶降解造成的损耗,提高了核酸递送的效率。当利用该载体递送siRNA时,体外24小时基因沉默效率达到75%,体内实验时72小时几乎完全沉默目的基因。当利用该载体向肿瘤部位递送5`‑pppdsRNA,可显著抑制肿瘤的生长。另外,Zn2+交联核酸后使用GMP修饰可以增强对核酸的保护。此外,负载核酸的纳米内核在过表达谷胱甘肽的胞质环境下,可以响应谷胱甘肽释放出核酸。
-
公开(公告)号:CN115804761A
公开(公告)日:2023-03-17
申请号:CN202210937285.6
申请日:2022-08-05
Applicant: 暨南大学
IPC: A61K9/51 , A61K31/353 , A61K31/7024 , A61K31/7088 , A61K31/713 , A61K41/00 , A61K45/06 , A61K47/46 , A61P19/02 , A61P29/00
Abstract: 本发明公开了一种仿生纳米基因载体及制备方法与应用。本发明通过将多酚单体与核酸药物混合,在20~30℃条件下孵育,得到纳米粒子;将纳米粒粒子和高分子混合,得到仿生纳米载体的内核;使用含有蛋白酶抑制剂的细胞膜提取试剂提取炎症免疫细胞的细胞膜;将细胞膜与光热试剂混合,在20~30℃条件下反应,待反应结束后离心得到改性免疫细胞膜;将内核和改性免疫细胞膜混合,使用微脂质体挤出器将混合物通过聚碳酸酯多孔膜数次,得到仿生纳米载体。该制备方法简单,得到的仿生纳米载体以天然产物为基本结构单元构建,直接利用治疗药物构建纳米载体,兼具生物可降解和无毒性代谢等优点。
-
公开(公告)号:CN108567993B
公开(公告)日:2021-02-05
申请号:CN201810236193.9
申请日:2018-03-21
Applicant: 暨南大学
Abstract: 本发明公开一种基于3D打印构建用于降血糖的人工智能胰腺的方法,涉及3D生物打印及人工胰腺领域。该方法包括缩醛化葡聚糖加载胰岛素纳米粒子的制备、打印用水凝胶的制备、水凝胶支撑浴的制备、3D打印制备等步骤。本发明3D打印制备的人工智能胰腺具有生物相容性好,生物可降解的优点,能够根据实时血糖浓度控制胰岛素的释放,从而达到智能降血糖及达到长时间控制血糖浓度在正常范围的目的,避免了多次进行血糖检测以及皮下注射。本发明不需要携带便携式设备,不用更换电池,导管等,能够极大地减轻患者的负担,具有较突出的应用基础研究的价值和极具潜力的市场开发前景。
-
公开(公告)号:CN111378185A
公开(公告)日:2020-07-07
申请号:CN202010242053.X
申请日:2020-03-31
Applicant: 暨南大学
IPC: C08J3/24 , C08L89/00 , C08L5/08 , C08L5/10 , C08K5/07 , A61K47/64 , A61K31/737 , A61K31/727 , A61P19/02 , A61P29/00
Abstract: 本发明公开了一种仿生蛋白多糖类纳米材料及其制备方法与应用。本发明将B型明胶溶液与含有磺酸基团且不含胺基的阴离子聚合物混合,调节pH至反应体系呈酸性;再依次加入丙酮、交联剂,搅拌,反应,旋蒸去除丙酮,终止反应;将反应产物纯化处理,得到离子交联负载药物纳米明胶,然后与聚合物进一步混合,搅拌,反应,得到一种双重负载的纳米明胶载体材料,方法简单易行,产率高,易于大批量生产。本发明仿生蛋白多糖类纳米材料通过特殊不同作用力的双重负载的载药方式,提高了载药量高,可同时实现蛋白酶控制释放与简单物理控制释放效果,药物的利用率高,在未来的药物传递领域中具有广阔的应用前景。
-
公开(公告)号:CN108587903A
公开(公告)日:2018-09-28
申请号:CN201810236195.8
申请日:2018-03-21
Applicant: 暨南大学
Abstract: 本发明公开一种使用支撑浴的多喷头快速3D打印肿瘤组织模型的方法,涉及生物3D打印领域。本发明的方法以海藻酸盐、光固化明胶等混合封装细胞,在支撑浴中快速打印,不同的细胞的打印通过快速切换喷头而实现打印。通过打印正常组织和肿瘤组织于一个完整的模型,从而更好的还原出体内肿瘤组织的结构。水凝胶支撑浴的封闭的性质,可以提供更好的无菌环境,同时打印时避免因沉降导致的细胞密度和种类空间的不可控。喷头的快速切换在一定程度上减少了打印时间,有效减缓了细胞在打印过程中活性的降低,并有效的保证打印结构的完整性。使用同轴针头进行打印则有效解决了凝胶的固化问题。并且肿瘤模型构建速度更快,能够更好地用于肿瘤治疗的研究。
-
公开(公告)号:CN108543083A
公开(公告)日:2018-09-18
申请号:CN201810630387.7
申请日:2018-06-19
Applicant: 暨南大学
Abstract: 本发明提供了一种生物膜包裹的多模态肿瘤造影剂及其制备方法与应用。所述的生物膜包裹的多模态肿瘤造影剂,包括生物膜和包裹于生物膜中的超顺磁性四氧化三铁的铁蛋白纳米笼(M-HFn)和荧光染料,其中的超顺磁性四氧化三铁的铁蛋白纳米笼与荧光染料连接形成荧光染料-M-HFn复合物,构建得到用于体内的仿生纳米生物膜载体递送体系,可实现体内长循环,增强对肿瘤靶向性,减少非特异性积累,降低对正常组织的损害,同时增强造影效果。本发明还提供了本发明所述的生物膜包裹的多模态肿瘤造影剂的制备方法,在临床肿瘤学早期诊疗等领域拥有重要的应用前景和研究价值。
-
公开(公告)号:CN115998709A
公开(公告)日:2023-04-25
申请号:CN202211045471.5
申请日:2022-08-30
Applicant: 暨南大学
Abstract: 本发明提供了一种膜融合纳米核酸载体及其制备方法与应用。本发明设计的膜融合纳米核酸载体利用通过膜融合的方式向细胞质递送核酸分子。膜融合递送方式绕过了经典的细胞内吞途径,由此避免了核酸分子在进入细胞内体或溶酶体后被核酸酶降解造成的损耗,提高了核酸递送的效率。当利用该载体递送siRNA时,体外24小时基因沉默效率达到75%,体内实验时72小时几乎完全沉默目的基因。当利用该载体向肿瘤部位递送5`‑pppdsRNA,可显著抑制肿瘤的生长。另外,Zn2+交联核酸后使用GMP修饰可以增强对核酸的保护。此外,负载核酸的纳米内核在过表达谷胱甘肽的胞质环境下,可以响应谷胱甘肽释放出核酸。
-
公开(公告)号:CN111450252B
公开(公告)日:2023-01-10
申请号:CN202010218123.8
申请日:2020-03-25
Applicant: 暨南大学
Abstract: 本发明公开了一种用于靶向堵塞肿瘤血管的药物及其制备方法与应用。该用于靶向堵塞肿瘤血管的药物,包括生物膜、MOFs、内源性蛋白以及靶向分子;其中,MOFs包裹于生物膜中;内源性蛋白负载于MOFs上;靶向分子连接于生物膜的外部。本发明还提供了该药物的制备方法,通过一锅法合成负载内源性蛋白的MOFs,然后加入生物膜,搅拌、超声处理、挤压包覆;随后加入磷脂‑聚乙二醇‑靶向分子混合孵育,冷冻干燥,得到用于靶向堵塞肿瘤血管的药物。该药物能专一识别并阻断肿瘤新生血管,使肿瘤细胞因缺乏营养和氧气饥饿而死,而不影响正常细胞;在肿瘤治疗领域具有前所未有的潜力。
-
公开(公告)号:CN111000825B
公开(公告)日:2022-01-18
申请号:CN201911342885.2
申请日:2019-12-23
Applicant: 暨南大学
Abstract: 本发明提供了一种具有氧化和抗氧化双重功能的仿生纳米载体及其制备方法与应用。本发明提供的仿生纳米载体包括红细胞膜和包覆于红细胞膜内的有机金属骨架,有机金属骨架上负载有功能化SOD酶和β‑拉帕醌。该仿生纳米载体到达肿瘤细胞酸性环境后,MOF中的金属‑配体键被水解,产生质子化配体破坏红细胞膜,酶和药物释放;β‑拉帕醌被肿瘤细胞高表达的醌氧化还原酶1催化产生大量的超氧阴离子,经SOD酶催化产生过氧化氢,最后SOD酶中的铁离子通过芬顿反应将过氧化氢催化产生羟基自由基,进而杀死肿瘤细胞。本发明提供的仿生纳米载体通过酶进行治疗不仅不产生抗药性,还可以显著降低因药物施用造成的系统毒性,具有极高的临床应用前景。
-
公开(公告)号:CN111450252A
公开(公告)日:2020-07-28
申请号:CN202010218123.8
申请日:2020-03-25
Applicant: 暨南大学
Abstract: 本发明公开了一种用于靶向堵塞肿瘤血管的药物及其制备方法与应用。该用于靶向堵塞肿瘤血管的药物,包括生物膜、MOFs、内源性蛋白以及靶向分子;其中,MOFs包裹于生物膜中;内源性蛋白负载于MOFs上;靶向分子连接于生物膜的外部。本发明还提供了该药物的制备方法,通过一锅法合成负载内源性蛋白的MOFs,然后加入生物膜,搅拌、超声处理、挤压包覆;随后加入磷脂-聚乙二醇-靶向分子混合孵育,冷冻干燥,得到用于靶向堵塞肿瘤血管的药物。该药物能专一识别并阻断肿瘤新生血管,使肿瘤细胞因缺乏营养和氧气饥饿而死,而不影响正常细胞;在肿瘤治疗领域具有前所未有的潜力。
-
-
-
-
-
-
-
-
-