一种模型的处理方法、装置及设备

    公开(公告)号:CN116579777A

    公开(公告)日:2023-08-11

    申请号:CN202310582016.7

    申请日:2023-05-22

    Abstract: 本说明书实施例公开了一种模型的处理方法、装置及设备,该方法包括:获取应用于元学习的样本数据,该样本数据中包括对应事件的特征、样本标签信息、对应事件所属的业务场景和支撑集,支撑集中包括多个不同的事件类别,以及每个事件类别对应的支撑样本数据,然后,基于样本数据、支撑集中不同事件类别的支撑样本数据对应的注意力权重和不同事件类别包含的支撑样本数据的数量,确定不同事件类别对应的类别中心,最终,基于不同事件类别对应的类别中心、样本数据和预设的优化目标函数对风险识别模型进行模型训练,得到训练后的风险识别模型,优化目标函数基于经验风险最小化学习策略和样本数据对应的概率分布的分布鲁棒优化策略构建。

    一种模型训练的方法、装置、存储介质及电子设备

    公开(公告)号:CN116028820A

    公开(公告)日:2023-04-28

    申请号:CN202310299829.5

    申请日:2023-03-20

    Abstract: 本说明书公开了一种模型训练的方法、装置、存储介质及电子设备,所述方法包括:先获取风控样本以及风控样本对应于各风险类型的原始标注,再根据风控样本对应于各风险类型的原始标注和预设的规则,确定风控样本的综合风险标注。之后,在训练待训练的风险识别模型时,若风险类型对应的梯度与综合梯度存在冲突,将风险类型对应的梯度与综合梯度不冲突的梯度分量重新作为风险类型对应的梯度,从而可以消除风险类型对应的梯度与综合梯度冲突的梯度分量。然后,根据各风险类型分别对应的梯度,确定出不存在冲突的待训练的风险识别模型的梯度来调整模型参数,减少了梯度冲突对模型训练的影响,使得训练得到的风险识别模型更准确。

Patent Agency Ranking