-
公开(公告)号:CN108280842B
公开(公告)日:2020-07-10
申请号:CN201711483680.7
申请日:2017-12-29
Applicant: 广州海昇计算机科技有限公司
Abstract: 本发明公开了一种克服光照突变的前景分割方法,包括有以下步骤:采用混合高斯背景建模的模型对处理后的视频帧灰度图进行初始化;结合光强突变量对视频帧进行混合高斯背景建模处理,并得到更新的背景模型;然后通过联通域标记、特征提取以及行为判断的结果提取出前景目标。本发明方法在采用传统混合高斯背景建模方法的前提下,在模型中引入光照突变量对图像进行处理,对背景模型实时更新,解决了目标分割对光照和环境突变敏感的问题,也解决了传统混合高斯模型中对长时间静止目标被更新为背景并消失的问题,进一步提高了前景分割的准确率。本发明作为一种克服光照突变的前景分割方法可广泛应用于图像处理领域。
-
公开(公告)号:CN110705467A
公开(公告)日:2020-01-17
申请号:CN201910938866.X
申请日:2019-09-30
Applicant: 广州海昇计算机科技有限公司
IPC: G06K9/00
Abstract: 本发明公开了一种人脸表情识别方法、系统、装置和存储介质,所述方法包括识别图像中的人脸区域,分别根据所述嘴部动作程度、眼部动作程度和眉毛部动作程度,确定相应的人脸表情可能值,以及获取所有所述人脸表情可能值中的最优解作为人脸表情识别结果等步骤。通过对嘴部、眼部以及眉毛部分析得到的嘴部动作程度、眼部动作程度和眉毛部动作程度可以准确地分析出人脸表情,因此本发明具有高的识别准确率。本发明对硬件设备性能要求低,从而使得可以低成本地实现人脸表情识别功能,从而在低性能移动设备、商场自助服务机、投币游戏机以及儿童玩具等低端设备上实现人脸表情识别功能,提高用户的使用体验。本发明广泛应用于人脸表情识别技术领域。
-
公开(公告)号:CN110378211A
公开(公告)日:2019-10-25
申请号:CN201910502104.5
申请日:2019-06-11
Applicant: 广州海昇计算机科技有限公司
Abstract: 本发明公开了一种基于教室场景下的目标检测方法、系统、装置及存储介质,方法包括:获取待检测图像;通过卷积层对待检测图像进行特征提取,得到目标特征信息;将目标特征信息输入至预测模块进行预测,得到最终分类得分和最终边界框。本发明通过多个级联的预测网络进行预测,从而能通过多阈值的预测结构使得目标检测的准确率得到有效的提升。本发明可广泛应用于目标检测领域中。
-
公开(公告)号:CN109800770A
公开(公告)日:2019-05-24
申请号:CN201811623883.6
申请日:2018-12-28
Applicant: 广州海昇计算机科技有限公司
Abstract: 本发明公开一种实时目标检测的方法、系统及装置,其中方法步骤为:获取待检测的图片,对图片进行第一卷积处理获得第一特征图;结合第一特征图、第一空间信息和第一通道信息获得第二特征图;对第二特征图进行第二卷积处理获得第三特征图;结合第三特征图、第二空间信息和第二通道信息获得第四特征图;对第四特征图进行第三卷积处理获得第五特征图;依次对第五特征图进行多次反卷积处理后,获得第六特征图、第七特征图和第八特征图,以及通过结合特征图获取第九特征图和第十特征图,对第六特征图、第九特征图和第十特征图进行分类和边界框的预测,本发明通过结合不同特征图以及空间信息和通道信息来提高检测准确率,可广泛应用于目标检测领域。
-
公开(公告)号:CN109784385A
公开(公告)日:2019-05-21
申请号:CN201811633640.0
申请日:2018-12-29
Applicant: 广州海昇计算机科技有限公司
Abstract: 本发明公开了一种商品自动识别方法、系统、装置及存储介质,其通过获取第一商品图像后,将第一商品图像输入至训练好的深度学习模型进行特征图提取处理后,得到所述第一商品图像的特征图,从所述特征图中获取所述第一商品图像的商品位置标注数据,接着所述深度学习模型利用所述特征图,对所述第一商品图像的商品位置标注数据所对应的图像块进行商品类型识别处理后,输出识别出的商品类型。可见,本发明实施例具有智能自动化程度高、投入设备购买成本低、处理效率高且识别准确的优点,可广泛应用于自动化零售领域中。
-
公开(公告)号:CN109543662A
公开(公告)日:2019-03-29
申请号:CN201811619663.6
申请日:2018-12-28
Applicant: 广州海昇计算机科技有限公司
Abstract: 本发明公开了一种基于区域提议的目标检测方法、系统、装置和存储介质,所述方法包括将待检测图像输入到目标检测网络中,接收目标检测网络输出的最终边界框,根据所述最终边界框,从所述待检测图像中确定要检测的目标等步骤。本发明提供了一种全新的目标检测网络,目标检测网络包括多个分支,各分支的特征图中均包含相应的局部信息和全局信息,每个分支在上一个分支的处理结果的基础上继续进行特征提取和特征信息学习,因此能够兼顾图像的局部信息和全局信息,能够取得很高的目标检测准确度。本发明广泛应用于图像识别技术领域。
-
公开(公告)号:CN109522883A
公开(公告)日:2019-03-26
申请号:CN201811625040.X
申请日:2018-12-28
Applicant: 广州海昇计算机科技有限公司
IPC: G06K9/00
Abstract: 本发明公开了一种人脸检测方法、系统、装置及存储介质,该方法包括:将获得的第一教室图像输入至训练好的卷积神经网络中进行人脸检测处理后,输出第一教室图像中若干个人脸的位置信息;其中,所述卷积神经网络在训练时所采用的训练输入图像是通过对原始教室图像进行预处理后得到的图像,所述预处理包括尺度变换处理、噪声加入处理、颜色变换处理、亮度变换处理以及镜像变换处理中至少一种预处理。该系统包括获取单元和处理单元。该装置包括用于存储程序的存储器以及用于加载程序以执行所述方法的处理器。通过使用本发明的检测方案,能快速且准确地对教师场景下的图像进行人脸检测,可广泛应用于教室考勤领域中。
-
公开(公告)号:CN104601910B
公开(公告)日:2018-07-24
申请号:CN201510038317.9
申请日:2015-01-26
Applicant: 广州海昇计算机科技有限公司
Abstract: 本发明公开了一种基于FPGA的四路全高清视频处理电路,其包括FPGA芯片,所述FPGA芯片包括存储控制器、通道选择开关模块、第一视频层叠加模块、第二视频层叠加模块、第三视频层叠加模块、第四视频层叠加模块、视频时序控制模块、视频合成模块、视频模式参数控制器、四个视频输入处理模块以及四个视频放大模块。通过使用本发明基于FPGA芯片的画中画和画外画视频处理电路,可满足对多路全高清视频信号同时进行采集处理的需求,而且还具有架构简单、易于设计实现等优点。本发明作为一种基于FPGA的四路全高清视频处理电路可广泛应用于高清视频处理领域中。
-
公开(公告)号:CN108256447A
公开(公告)日:2018-07-06
申请号:CN201711480429.5
申请日:2017-12-29
Applicant: 广州海昇计算机科技有限公司
Abstract: 本发明公开了一种基于深度神经网络的无人机航拍视频分析方法,步骤为:将采集到的无人机航拍视频上传至视频平台;建立无人机航拍人群分析库,建立训练集和测试集;训练并测试模型直至测试正确率大于期望值;保存并应用训练后的模型,对无人机航拍视频平台上实时采集到的视频进行分析处理;保存并统计分析处理结果。本发明方法结合无人机航拍人群分析库和深度学习神经网络模型,能够自动实时对无人机航拍视频进行人群行为识别和分析,从而能够在相应情况下作出预警,降低人群相关事故发生的概率,其分析方法相对于以往的人工分析方法,分析更准确,效率更高。本发明作为一种基于深度神经网络的无人机航拍视频分析方法可广泛应用于数据处理领域。
-
公开(公告)号:CN108111857A
公开(公告)日:2018-06-01
申请号:CN201711478633.3
申请日:2017-12-29
Applicant: 广州海昇计算机科技有限公司
IPC: H04N19/177 , H04N19/184 , H04N19/503 , H04N19/19 , H04N19/146
Abstract: 本发明公开了用于H.265码率控制的目标比特分配方法、系统及装置。该方法包括:GOP目标比特数的分配;计算GOP中帧图的已编码比特数;根据帧图的已编码比特数及GOP目标比特数,计算出GOP中帧图的比特分配权重;根据比特分配权重,对帧图进行目标比特分配;计算出当前LCU的帧内梯度;判断当前帧图是否为I帧,若是,则以帧内梯度作为LCU梯度;反之,则计算LCU的帧间梯度;判断LCU的帧内梯度是否大于帧间梯度,若是,则以帧间梯度作为LCU梯度;反之,则以帧内梯度作为LCU梯度;计算出当前帧图的总梯度;根据基于总梯度而计算出的LCU复杂度的权重,对LCU层进行目标比特分配。本发明提高了目标比特分配的准确性,可广泛适用于视频编码领域中。
-
-
-
-
-
-
-
-
-