-
公开(公告)号:CN112199531B
公开(公告)日:2024-05-17
申请号:CN202011224930.7
申请日:2020-11-05
Applicant: 广州杰赛科技股份有限公司 , 广州杰赛通信规划设计院有限公司
IPC: G06F16/483 , G06F18/213 , G06F18/214 , G06F18/22
Abstract: 本发明公开了一种基于哈希算法和邻域图的跨模态检索方法及装置,检索方法包括:获取多模态原始样本,对多模态原始样本经过特征变换前后得到的残差值进行最小化处理,得到最小化残差值;根据协同矩阵分解方法学习多模态原始样本之间的潜在关联,并根据潜在关联计算得到多模态原始样本的模态间的语义一致性;采用邻域图的流形学习,计算得到多模态原始样本的模态内的语义一致性;将最小化残差值、模态间的语义一致性和模态内的语义一致性,结合避免过度拟合的正则化计算得到目标函数。本发明实施例通过综合考虑多模态的全局特征和模态间的局部特征,计算得到用于跨模态检索的目标函数,以实现提高跨模态检索的全面性和准确性。
-
公开(公告)号:CN109885831B
公开(公告)日:2023-06-02
申请号:CN201910091177.X
申请日:2019-01-30
Applicant: 广州杰赛科技股份有限公司 , 广州杰赛通信规划设计院有限公司
IPC: G06F40/289 , G06F40/242 , G06F16/35
Abstract: 本发明公开了一种关键术语抽取方法、装置、设备及计算机可读存储介质,该方法包括:根据预先构建的特定领域术语词典,对文本进行切分处理;利用预设的第一抽取窗口遍历文本,对切分处理后得到的词语进行抽取,获得特定领域的候选术语,根据预先构建的特定领域术语词典,对切分处理后得到的词语进行抽取,获得特定领域的候选术语;通过预先构建的概率主题模型对候选术语进行主题聚类,获得多个主题关联的候选术语及其关联概率;根据每个主题关联的候选术语及其关联概率,确定关键术语,本发明基于特定领域术语词典对文本划分,并采用概率主题模型进行关键术语提取,有效抽取特定领域的关键术语,提高关键术语抽取的准确性。
-
公开(公告)号:CN113162923B
公开(公告)日:2022-12-02
申请号:CN202110386728.2
申请日:2021-04-12
Applicant: 广州杰赛科技股份有限公司 , 广州杰赛通信规划设计院有限公司
IPC: H04L9/40 , H04L43/08 , H04L43/0823 , H04L43/0829 , H04L43/0888 , H04L43/0852
Abstract: 本发明公开了一种基于用户行为的用户可信度评估方法、装置及存储介质,所述方法包括:获取用户与云计算服务交互过程中的信任属性信息,并计算所述用户在交互过程中的初始信任度;其中,信任属性信息包括安全信任属性信息、可靠信任属性信息和性能信任属性信息;跟踪用户的当前行为路径,并对当前行为路径与用户的频繁行为路径进行相似度计算,得到可信度系数;对初始信任度与可信度系数进行相乘运算,得到单次用户与云计算服务交互过程中的信任度;将所述单次用户与云计算服务交互过程中的信任度与时间衰减因子相结合进行计算,得到用户的综合可信度。本发明能够实现基于用户交互行为的用户身份可信度评估,同时还能提高用户可信度评估的准确性。
-
公开(公告)号:CN113115327B
公开(公告)日:2022-12-02
申请号:CN202110239192.1
申请日:2021-03-04
Applicant: 广州杰赛科技股份有限公司 , 广州杰赛通信规划设计院有限公司
Abstract: 本发明公开了一种网络性能动态优化的方法、装置、设备及存储介质,通过获取待优化区域的即时网络性能信息和预设的服务质量标准信息;根据即时网络性能信息和所述服务质量标准信息判断所述待优化区域的即时网络状态;根据所述即时网络状态调整并更新优先节点数量;通过判断出的不同即时网络状态对优先节点的数量调整,更新网络节点的数量网络性能进行优化,避免出现网络性能不满足用户需求的服务质量标准的风险或网络性能富余造成能耗和网络资源的浪费,实现网络性能、网络资源利用率以及网络能耗的均衡。
-
公开(公告)号:CN113114489B
公开(公告)日:2022-06-17
申请号:CN202110337357.9
申请日:2021-03-29
Applicant: 广州杰赛科技股份有限公司 , 广州杰赛通信规划设计院有限公司
Abstract: 本发明涉及网络安全技术领域,公开了一种网络安全态势评估方法、装置、设备及存储介质,所述方法包括:获取网络安全态势指标;通过滑动窗口对所述网络安全态势指标进行滑动处理,获得输入数据;根据所述输入数据获得网络安全态势感知特征向量;根据所述网络安全态势感知特征向量获得网络安全态势评估结果。本发明实施例提供的一种网络安全态势评估方法,能够提高网络安全态势评估的准确性。
-
公开(公告)号:CN114398160A
公开(公告)日:2022-04-26
申请号:CN202111550535.2
申请日:2021-12-17
Applicant: 广州杰赛科技股份有限公司 , 广州杰赛通信规划设计院有限公司
Abstract: 本发明公开了一种基于自适应任务调度的全局感知模型构建方法及装置,该方法包括如下步骤:步骤S1,固定采样时间间隔,随机选择K个服务器;步骤S2,令K个服务器节点构建局部模型,利用边缘节点的分布式感知技术,并结合感知模型的任务分配方法,实现感知模型并行训练最小化和训练质量不断迭代校正的自适应任务分配,从而通过自适应任务分配选择合适的节点以实现局部模型的选取;步骤S3,定义一个智能体系统,基于局部模型的训练,采用最大估计效用的策略来选取执行参数传输,通过本地智能体与中心智能体参数的交互实现全局模型的构建。
-
公开(公告)号:CN109271930B
公开(公告)日:2020-11-13
申请号:CN201811075329.9
申请日:2018-09-14
Applicant: 广州杰赛科技股份有限公司 , 广州杰赛通信规划设计院有限公司
IPC: G06K9/00
Abstract: 本发明提供了一种微表情识别方法、装置与存储介质,所述方法,包括:检测预先采集的目标人脸图像的人脸特征,获取所述目标人脸图像的至少五个人脸特征点;根据所述目标人脸图像的人脸特征点以及预设的图像分块规则,对所述目标人脸图像进行切块处理,得到若干个图块;根据所述若干个图块,通过预先建立的卷积神经网络模型,获得微表情分类结果。上述方法依据获取的人脸特征点以及预设的图像分块规则,对所述目标人脸图像进行切块处理,并采用卷积神经网络对切块后的得到的若干个图块进行识别分类,能够有效提高微表情识别的速度、精度,从而大幅度提高微表情识别的工作效率。
-
公开(公告)号:CN111209735A
公开(公告)日:2020-05-29
申请号:CN202010004721.5
申请日:2020-01-03
Applicant: 广州杰赛科技股份有限公司
Inventor: 蒋仕宝
IPC: G06F40/205 , G06F16/35 , G06K9/62
Abstract: 本发明公开了一种文档敏感度的计算方法,包括:获取待识别文档的价值元素,并将每一价值元素向量化,将符合预设的特征贡献度阈值的价值元素对应的价值元素向量进行向量拼接,得到所述待识别文档的目标价值元素向量;根据所述目标价值元素向量与预设文档的预设价值元素向量的相似度,计算所述待识别文档的相似度熵,进而计算所述待识别文档的敏感度。本发明实施例还公开了相应的文档敏感度的计算装置,实施本发明实施例,通过对文档的价值元素的识别,采用特征向量相似度的方法实现对敏感数据的识别与分析,实现对文档敏感度的计算,有效提高对文档敏感度计算的准确性,且计算方法简便。
-
公开(公告)号:CN109885831A
公开(公告)日:2019-06-14
申请号:CN201910091177.X
申请日:2019-01-30
Applicant: 广州杰赛科技股份有限公司 , 广州杰赛通信规划设计院有限公司
Abstract: 本发明公开了一种关键术语抽取方法、装置、设备及计算机可读存储介质,该方法包括:根据预先构建的特定领域术语词典,对文本进行切分处理;利用预设的第一抽取窗口遍历文本,对切分处理后得到的词语进行抽取,获得特定领域的候选术语,根据预先构建的特定领域术语词典,对切分处理后得到的词语进行抽取,获得特定领域的候选术语;通过预先构建的概率主题模型对候选术语进行主题聚类,获得多个主题关联的候选术语及其关联概率;根据每个主题关联的候选术语及其关联概率,确定关键术语,本发明基于特定领域术语词典对文本划分,并采用概率主题模型进行关键术语提取,有效抽取特定领域的关键术语,提高关键术语抽取的准确性。
-
公开(公告)号:CN109271930A
公开(公告)日:2019-01-25
申请号:CN201811075329.9
申请日:2018-09-14
Applicant: 广州杰赛科技股份有限公司 , 广州杰赛通信规划设计院有限公司
IPC: G06K9/00
Abstract: 本发明提供了一种微表情识别方法、装置与存储介质,所述方法,包括:检测预先采集的目标人脸图像的人脸特征,获取所述目标人脸图像的至少五个人脸特征点;根据所述目标人脸图像的人脸特征点以及预设的图像分块规则,对所述目标人脸图像进行切块处理,得到若干个图块;根据所述若干个图块,通过预先建立的卷积神经网络模型,获得微表情分类结果。上述方法依据获取的人脸特征点以及预设的图像分块规则,对所述目标人脸图像进行切块处理,并采用卷积神经网络对切块后的得到的若干个图块进行识别分类,能够有效提高微表情识别的速度、精度,从而大幅度提高微表情识别的工作效率。
-
-
-
-
-
-
-
-
-