-
公开(公告)号:CN108446422B
公开(公告)日:2021-09-07
申请号:CN201810083277.3
申请日:2018-01-29
Applicant: 广东工业大学
IPC: G06F30/23 , G06F30/28 , G06F30/25 , G06F113/08 , G06F115/04
Abstract: 本发明公开了一种面向复杂微流控芯片的多尺度耦合仿真方法,包括下述步骤:首先对微流控芯片中生物微粒受到的各单一物理场作用进行基于有限单元法的仿真,之后对生物微粒受到的多物理场综合作用进行基于格子玻尔兹曼方法的生物微粒模型的多相流仿真;相对于传统仿真方法难以处理的两相交界面处的形变和追踪问题,本发明采用介观格子玻尔兹曼仿真方法,能很好的反映细胞的形变和运动轨迹追踪;采用介观格子玻尔兹曼仿真方法求解微流控芯片内部流场,不受限于流体连续性假设,能够反映流体流动的本质和细微变化。
-
公开(公告)号:CN108031975B
公开(公告)日:2020-02-21
申请号:CN201711003709.7
申请日:2017-10-24
Applicant: 广东工业大学
IPC: B23K26/352
Abstract: 本发明公开了一种连续多层液滴包裹的激光诱导植入制备方法,包括如下步骤:S1:多种介质的制备;S2:脉冲的激光光束(1)从玻璃基片(3)垂直入射,激光光束(1)透过玻璃基片(3),聚焦在所述第一层介质层(4)的一面,当激光光束(1)的能量大于第一层介质(4)的击穿阈值时,将会产生高温高压的等离子体(2),等离子体(2)对外辐射冲击波;S3:等离子体(2)对外辐射冲击波推动第一层介质层(4)形成熔融液滴(5),熔融液滴(5)嵌入下方的第二层介质(6)和第三层介质层(7)中,形成多层液滴嵌入(8)。本发明通过激光诱导向前转移技术,得到大小均匀可控,可对单个液滴精准操控的两层或者多层的液滴包裹。
-
公开(公告)号:CN109271651A
公开(公告)日:2019-01-25
申请号:CN201810744815.9
申请日:2018-07-09
Applicant: 广东工业大学
IPC: G06F17/50
Abstract: 本发明属于仿真技术领域,本发明公开了一种基于激光诱导的格子玻尔兹曼气-液两相流的仿真方法。该方法首先对激光诱导等离子体气泡进行初始压强的计算,将激光诱导等离子体气泡的初始压强代入Rayleigh-Plesset方程,计算激光诱导等离子体气泡的半径随时间的变化关系,确立激光诱导等离子体气泡模型的入口流量条件;建立激光诱导转移的格子玻尔兹曼气-液两相流仿真模型;将确立模型的入口流量条件代入激光诱导转移的格子玻尔兹曼气-液两相流仿真模型中,计算得到模型的入口边界条件,控制激光诱导向前转移过程中产生的等离子体气泡的膨胀与收缩,实现激光诱导向前转移的数值仿真。该方法可为激光参数和材料参数的选择提供指导。
-
公开(公告)号:CN108890055A
公开(公告)日:2018-11-27
申请号:CN201810689854.3
申请日:2018-06-28
Applicant: 广东工业大学
IPC: B23H7/02
Abstract: 本发明公开了一种利用快走丝电火花制备微细气泡表面的方法,包括以下步骤:步骤1:对工件材料的预处理;步骤2:制备放电工作液;步骤3:选用快走丝的电火花线切割机床进行电火花线切割;步骤4:快走丝的电火花线切割机床采用固定频率脉冲的脉冲电源;脉冲电源的幅度、脉冲长度和占空比分别为100v、32μs和210μs,电极与工件之间的间隙d=40μm;步骤5:重复步骤3和步骤4,直到工件的表面制备出微细气泡的表面结构。通过在工件的表面加工制备出微细气泡,超声波在进入工件表面的微细气泡后能量会被大大削弱,从而提高了工件对雷达波的吸收效率,所以将工件置于需要被保护的设备外壁表面上,可以大大提高设备的保密性。
-
公开(公告)号:CN108031975A
公开(公告)日:2018-05-15
申请号:CN201711003709.7
申请日:2017-10-24
Applicant: 广东工业大学
IPC: B23K26/352
Abstract: 本发明公开了一种连续多层液滴包裹的激光诱导植入制备方法,包括如下步骤:S1:多种介质的制备;S2:脉冲的激光光束(1)从玻璃基片(3)垂直入射,激光光束(1)透过玻璃基片(3),聚焦在所述第一层介质层(4)的一面,当激光光束(1)的能量大于第一层介质(4)的击穿阈值时,将会产生高温高压的等离子体(2),等离子体(2)对外辐射冲击波;S3:等离子体(2)对外辐射冲击波推动第一层介质层(4)形成熔融液滴(5),熔融液滴(5)嵌入下方的第二层介质(6)和第三层介质层(7)中,形成多层液滴嵌入(8)。本发明通过激光诱导向前转移技术,得到大小均匀可控,可对单个液滴精准操控的两层或者多层的液滴包裹。
-
-
-
-