基于在线增量学习的HPC作业功耗预测方法及系统

    公开(公告)号:CN116821643A

    公开(公告)日:2023-09-29

    申请号:CN202310777733.5

    申请日:2023-06-28

    Abstract: 本发明提出了基于在线增量学习的HPC作业功耗预测方法及系统,涉及高性能计算领域,根据离线作业功耗数据,初始化预测模型;实时获取新采样的HPC作业功耗数据,形成输入数据流;预测模型处理输入数据流,输出未来时刻的功耗预测值;在处理输入数据流过程中,基于模型更新时机判定方法,使用在线增量学习进行模型的更新;基于模型更新时机判定方法是在接收到新数据时,通过对真实值与预测值之间的偏差距离分布变化进行监控,得到模型预测性能下降分数,基于预设的增量学习分数阈值,判定预测模型是否需要进行增量学习;本发明当模型预测性能出现下降时,对原有的模型参数进行优化与更新,以适用预测未来时刻功耗值的需求,提高预测的精度。

    基于超算的云边协同高通量海洋数据智能处理方法及系统

    公开(公告)号:CN114385601B

    公开(公告)日:2022-07-08

    申请号:CN202210291801.2

    申请日:2022-03-24

    Abstract: 本发明涉及流式数据智能处理技术领域,提供了基于超算的云边协同高通量海洋数据智能处理方法及系统,包括基于历史海洋观测数据构建每个海洋观测数据流的初始海洋数据智能处理模型;实时获取每个海洋观测数据流的数据并进行预处理;基于预处理后的每个海洋观测数据流数据,对相应的初始海洋数据智能处理模型进行实时迭代训练更新,得到每个海洋观测数据流的最新海洋数据智能处理模型,保存在模型版本库中;通过调用每个海洋观测数据流的最新海洋数据智能处理模型对每个海洋观测数据流中不断流入的数据进行实时推理与预测;将超算训练优化后的模型推送到边缘端,在边缘端进行模型更新,并进行具体推理应用,从而避免了数据远程传输,降低了延迟。

    一种基于复杂环境下的自适应图像增强方法及系统

    公开(公告)号:CN114387190A

    公开(公告)日:2022-04-22

    申请号:CN202210285072.X

    申请日:2022-03-23

    Abstract: 本发明涉及数字图像处理技术领域,提供了一种基于复杂环境下的自适应图像增强方法及系统,包括采集原始水下图像并进行预处理;利用RGB直方图统计预处理后的水下图像的RGB通道信息数据集;基于RGB通道信息数据集,利用训练好的水下图像退化分类模型得到不同退化程度的图像样本;基于不同退化程度的图像样本,利用训练好的不同退化程度的水下修复网络进行修复,得到修复后的水下图像;本发明相较于现有的方法能够更好的解决在不同时间节点出现的不同退化情况,由于针对不同退化程度调用不同修复模型,所以本发明对于水下退化图像的修复效果更好更自然。

Patent Agency Ranking