-
公开(公告)号:CN117239565A
公开(公告)日:2023-12-15
申请号:CN202311217123.6
申请日:2023-09-20
Applicant: 安徽理工大学 , 国网安徽省电力有限公司合肥供电公司 , 国网安徽省电力有限公司
Abstract: 本发明公开了一种电力配电网负荷监测装置,涉及负荷监测设备技术领域。本发明包括箱体,所述箱体的内部安装有电器元件,所述箱体的顶部固定连接有安装盒,所述安装盒的内部,所述安装盒的内壁上固定连接有电动伸缩杆,所述电动伸缩杆的输出端固定连接有第一齿条。本发明通过设置的双金属片、导热杆、第一导电头、第二导电头之间的相互配合,能够根据着火点附近温度高于周围温度,控制着火点附近的电磁阀开启,便于根据着火点位置打开该处一定范围内的喷头进行灭火,进行精准灭火,避免同时开启所有喷头进行灭火造成不必要的浪费,且能够在喷洒灭火材料时带动喷头往复移动,便于扩大喷洒灭火范围,进一步提高灭火效率。
-
公开(公告)号:CN116738306A
公开(公告)日:2023-09-12
申请号:CN202310517970.8
申请日:2023-05-09
Applicant: 安徽理工大学
IPC: G06F18/241 , H02J3/00 , G06F18/211 , G06N3/006
Abstract: 本发明公开了一种AASO联合KELM的电力负荷在线辨识方法,包括:采集不同类型电力负荷在一个连续采样周期内的电流、有功功率、无功功率和视在功率;分别提取电流、有功功率、无功功率和视在功率的时域特征、频域特征和熵特征;将提取到的时域特征、频域特征和熵特征合并,得到电力负荷的联合特征;基于自适应原子搜索算法(AASO)对电力负荷的联合特征进行特征筛选,得到电力负荷筛选特征;将筛选得到的特征作为核极限学习机(KELM)模型的输入,构建电力负荷辨识模型。本发明借助AASO实现了电力负荷特征的有效筛选,利用AASO进行KELM模型隐含层神经元数目的自整定解决了模型超参数选择的难题。
-