一种AASO联合KELM的电力负荷在线辨识方法

    公开(公告)号:CN116738306A

    公开(公告)日:2023-09-12

    申请号:CN202310517970.8

    申请日:2023-05-09

    Abstract: 本发明公开了一种AASO联合KELM的电力负荷在线辨识方法,包括:采集不同类型电力负荷在一个连续采样周期内的电流、有功功率、无功功率和视在功率;分别提取电流、有功功率、无功功率和视在功率的时域特征、频域特征和熵特征;将提取到的时域特征、频域特征和熵特征合并,得到电力负荷的联合特征;基于自适应原子搜索算法(AASO)对电力负荷的联合特征进行特征筛选,得到电力负荷筛选特征;将筛选得到的特征作为核极限学习机(KELM)模型的输入,构建电力负荷辨识模型。本发明借助AASO实现了电力负荷特征的有效筛选,利用AASO进行KELM模型隐含层神经元数目的自整定解决了模型超参数选择的难题。

Patent Agency Ranking