知识密集型推理问答方法、装置、电子设备和存储介质

    公开(公告)号:CN117634617B

    公开(公告)日:2024-05-17

    申请号:CN202410102332.4

    申请日:2024-01-25

    Applicant: 清华大学

    Abstract: 本发明涉及计算机领域,提供一种知识密集型推理问答方法、装置、电子设备和存储介质,方法包括:确定推理目标问题所需的步骤集合,步骤集合包括对应各步骤的知识操作原语;针对步骤集合中的各步骤,顺序进行原语执行,在此过程中,基于任一步骤对应的知识操作原语的各种执行方式、以及各种执行方式在数据管理器中关联的知识,确定该步骤对应的知识操作原语的目标执行方式,并基于目标执行方式、以及目标执行方式在数据管理器中关联的知识,执行该步骤对应的知识操作原语;基于步骤集合中步骤进行原语执行的结果,确定目标问题对应的答案。本发明提供的方法、装置、电子设备和存储介质,将符号逻辑与神经计算进行结合,确保问答实现的可靠性。

    知识密集型推理问答方法、装置、电子设备和存储介质

    公开(公告)号:CN117634617A

    公开(公告)日:2024-03-01

    申请号:CN202410102332.4

    申请日:2024-01-25

    Applicant: 清华大学

    Abstract: 本发明涉及计算机领域,提供一种知识密集型推理问答方法、装置、电子设备和存储介质,方法包括:确定推理目标问题所需的步骤集合,步骤集合包括对应各步骤的知识操作原语;针对步骤集合中的各步骤,顺序进行原语执行,在此过程中,基于任一步骤对应的知识操作原语的各种执行方式、以及各种执行方式在数据管理器中关联的知识,确定该步骤对应的知识操作原语的目标执行方式,并基于目标执行方式、以及目标执行方式在数据管理器中关联的知识,执行该步骤对应的知识操作原语;基于步骤集合中步骤进行原语执行的结果,确定目标问题对应的答案。本发明提供的方法、装置、电子设备和存储介质,将符号逻辑与神经计算进行结合,确保问答实现的可靠性。

    一种阅读理解数据集生成方法及组件

    公开(公告)号:CN116975222A

    公开(公告)日:2023-10-31

    申请号:CN202310723628.3

    申请日:2023-06-16

    Applicant: 清华大学

    Abstract: 本发明提供一种阅读理解数据集生成方法及组件,该方法包括:构建阅读理解的知识文档;知识文档包括阅读材料文本、背景知识库和阅读材料文本与背景知识库的实体对齐关系;根据知识文档进行推理链抽取,得到推理链和问题三元组;根据推理链和问题三元组进行数据生成,得到自然语言问题和自然语言问题对应的答案,从而得到高质量的数据库,语言智能系统根据数据库进行深度语义理解推理出问题的答案的效率和精准性更高。

Patent Agency Ranking