一种实体关系自动识别方法及系统

    公开(公告)号:CN107944559B

    公开(公告)日:2021-04-27

    申请号:CN201711190865.9

    申请日:2017-11-24

    Abstract: 本发明涉及一种实体关系自动识别方法及系统,该方法包括:训练卷积神经网络得到实体关系识别模型;获取对应待确认实体组的相关语料库;将相关语料进行分词,并将分词得到的相关词语转化为相关词向量;将相关词向量按相关语料转化为矩阵作为实体关系识别模型的输入,得到相关关系种类和相关关系种类的相似度值,将相似度值高的相关关系种类作为待确认实体组的关系种类。本发明通过锻炼卷积神经网络作为实体关系识别模型,在出现新增实体时,计算得到一系列新增实体组的关系种类,并得出每一项关系种类的相似度值,通过具体的数值来确定相关关系种类的程度,提高得到的新增实体组之间关系种类的准确性。

    基于层次判别树的多标签科研论文的分类方法

    公开(公告)号:CN110781297A

    公开(公告)日:2020-02-11

    申请号:CN201910881086.6

    申请日:2019-09-18

    Abstract: 本发明公开了一种基于层次判别树的多标签科研论文的分类方法,包括:步骤一、获取标签已知的论文和标签,提取标签的特征词语集合,构建二元判别模型;步骤二、将标签更新为二元判别模型,得层次判别树模型;步骤三、获取标签未知论文的文本表征,输入到层次判别树模型中根节点的所有二元判别模型中,计算具有该节点对应标签的概率,若大于阈值,则输出该根节点对应的标签;输入至该标签对应的节点的子节点的所有二元判别模型中,计算具有该节点代表标签的概率,若大于阈值,则输出该子节点对应的标签,逐级判断,直至叶节点;输出的所有标签即为该论文的标签。本发明具有充分挖掘论文的特征词语,快速、准确对论文进行层次分类的有益效果。

    一种实体关系自动识别方法及系统

    公开(公告)号:CN107944559A

    公开(公告)日:2018-04-20

    申请号:CN201711190865.9

    申请日:2017-11-24

    CPC classification number: G06N5/022 G06N3/0454

    Abstract: 本发明涉及一种实体关系自动识别方法及系统,该方法包括:训练卷积神经网络得到实体关系识别模型;获取对应待确认实体组的相关语料库;将相关语料进行分词,并将分词得到的相关词语转化为相关词向量;将相关词向量按相关语料转化为矩阵作为实体关系识别模型的输入,得到相关关系种类和相关关系种类的相似度值,将相似度值高的相关关系种类作为待确认实体组的关系种类。本发明通过锻炼卷积神经网络作为实体关系识别模型,在出现新增实体时,计算得到一系列新增实体组的关系种类,并得出每一项关系种类的相似度值,通过具体的数值来确定相关关系种类的程度,提高得到的新增实体组之间关系种类的准确性。

    基于不同人格特征的文本观点挖掘方法

    公开(公告)号:CN110825842B

    公开(公告)日:2022-07-29

    申请号:CN201910959523.1

    申请日:2019-10-10

    Abstract: 本发明公开了一种基于不同人格特征的文本观点挖掘方法,包括以下步骤:S1、构建最大熵模型;S2、针对某个事件,将全语料依据人格特征分成多个集合语料c,并通过耦合的狄利克雷过程DP构建跨人格特征主题模型;S3、每条文档进行分词处理,将每条文档的分词组成输入列表,作为跨人格特征主题模型的输入,并初始化跨人格特征主题模型的参数;S4、根据输入内容,采用吉布斯采样法,依据跨人格特征主题模型、最大熵模型迭代计算得出最终的人格特征主题模型的参数。本发明具有自动、准确地发现事件的主要主题,并区分不同人格特征对每个主题的客观方面(属性词)和主观观点(观点词)的有益效果。

    一种学术论文高效分配方法

    公开(公告)号:CN103336804A

    公开(公告)日:2013-10-02

    申请号:CN201310250302.X

    申请日:2013-06-21

    Abstract: 本发明公开了一种学术会议论文高效分配方法,包括:建立学术会议论文数据库;根据数据库中的实体及其属性搜集数据;根据数据库中的审稿人对论文的竞标程度、审稿人研究方向、论文方向、论文对审稿人的利益冲突、审稿人对论文的利益冲突、审稿人的冲突域等内容计算得分矩阵,同时需要加上审稿人不能审阅自己的论文的自然约束条件;根据得分矩阵对文章进行“冷热”度排序,并利用启发式算法对“冷门”论文进行优先分配,如果出现并列分数的情况,应加入对并列分数审稿人的意向以及工作量的考虑,再进行选择;在进行得分矩阵遍历的时候,需要考虑每位审稿人的工作量均衡分配;最后,将分配结果反映到矩阵中,直观反映审稿任务分配结果。

    基于不同人格特征的文本观点挖掘方法

    公开(公告)号:CN110825842A

    公开(公告)日:2020-02-21

    申请号:CN201910959523.1

    申请日:2019-10-10

    Abstract: 本发明公开了一种基于不同人格特征的文本观点挖掘方法,包括以下步骤:S1、构建最大熵模型;S2、针对某个事件,将全语料依据人格特征分成多个集合语料c,并通过耦合的狄利克雷过程DP构建跨人格特征主题模型;S3、每条文档进行分词处理,将每条文档的分词组成输入列表,作为跨人格特征主题模型的输入,并初始化跨人格特征主题模型的参数;S4、根据输入内容,采用吉布斯采样法,依据跨人格特征主题模型、最大熵模型迭代计算得出最终的人格特征主题模型的参数。本发明具有自动、准确地发现事件的主要主题,并区分不同人格特征对每个主题的客观方面(属性词)和主观观点(观点词)的有益效果。

Patent Agency Ranking