基于两阶段集成学习的风电异常数据识别方法

    公开(公告)号:CN105069476B

    公开(公告)日:2018-12-11

    申请号:CN201510484365.0

    申请日:2015-08-10

    Abstract: 本发明公开了一种基于两阶段集成学习的风电异常数据识别方法,包括以下步骤:S1:提取风电异常数据参数;S2:根据所述风电异常数据参数生成训练样本和测试样本;S3:利用随机森林训练所述训练样本得到随机森林模型:S4:根据所述随机森林模型,利用梯度迭代决策树训练所述训练样本得到梯度迭代决策树模型;以及S5:根据所述随机森林模型和所述梯度迭代决策树模型分别预测所述测试样本得到预测结果。本发明具有如下优点:提高了风电异常数据识别的准确率。

    基于两阶段集成学习的风电异常数据识别方法

    公开(公告)号:CN105069476A

    公开(公告)日:2015-11-18

    申请号:CN201510484365.0

    申请日:2015-08-10

    Abstract: 本发明公开了一种基于两阶段集成学习的风电异常数据识别方法,包括以下步骤:S1:提取风电异常数据参数;S2:根据所述风电异常数据参数生成训练样本和测试样本;S3:利用随机森林训练所述训练样本得到随机森林模型:S4:根据所述随机森林模型,利用梯度迭代决策树训练所述训练样本得到梯度迭代决策树模型;以及S5:根据所述随机森林模型和所述梯度迭代决策树模型分别预测所述测试样本得到预测结果。本发明具有如下优点:提高了风电异常数据识别的准确率。

Patent Agency Ranking