-
公开(公告)号:CN109879170B
公开(公告)日:2020-08-04
申请号:CN201910249372.0
申请日:2019-03-29
Applicant: 哈尔滨理工大学
Abstract: 一种起重机吊臂旁弯位移实时检测系统,涉及起重机吊臂旁弯位移实时检测技术。目的是为了解决无法对大型起重机工作过程中臂架的旁弯量进行实时监测的问题。本发明的检测系统,包括两个红外激光发射器、成像设备和工业计算机;所述两个红外激光发射器位于起重机基本臂的顶端,并且两个激光发射器与基本臂的中心轴线对称,且所述两个激光发射器位于同一水平面,成像设备的红外激光接收器位于起重机基本臂的底部中央,并且所述红外激光接收器的光轴与基本臂的中心轴线平行;所述成像设备的信号输出端连接工业计算机的图像信号输入端。该系统具有操作简单方便、可靠性高,精确度高等特点。提高了起重机作业过程中的安全性,减少事故的发生。
-
公开(公告)号:CN108460089A
公开(公告)日:2018-08-28
申请号:CN201810063815.2
申请日:2018-01-23
Applicant: 哈尔滨理工大学
Abstract: 本发明方案公开了基于Attention神经网络的多元特征融合中文文本分类方法,属于自然语言处理领域。为了进一步提高中文文本分类的准确性,本发明通过融合3条CNN通路充分挖掘文本数据在3种不同尺寸卷积核粒度下的特征;通过融合LSTM通路来体现文本数据之间的相互联系;特别地,通过融合所提出的Attention算法模型使相对重要的数据特征在中文文本类别识别过程中发挥更大的作用,从而提高模型对中文文本类别的识别能力。实验结果表明,同等实验条件下,相比于CNN模型,LSTM结构模型及其两者的组合模型,本发明提出的模型的中文文本分类准确率明显提高,能够更好的应用于对分类准确率要求高的中文文本分类领域。
-
公开(公告)号:CN108009154A
公开(公告)日:2018-05-08
申请号:CN201711385165.5
申请日:2017-12-20
Applicant: 哈尔滨理工大学
Abstract: 本发明一种基于深度学习模型的图像中文描述方法属于计算机视觉与自然语言处理领域;包括准备ImageNet图像数据集和AI Challenger图像中文描述数据集;对ImageNet图像数据集利用DCNN进行预训练,得到DCNN预训练模型;对AI Challenger图像中文描述数据集进行图像特征提取和图像特征映射,传输到GRU门限递归网络循环神经网络;对AI Challenger图像中文描述数据集中的AI Challenger图像标注集进行词编码矩阵构建;利用NNLM提取词嵌入特征,完成文本特征映射;GRU门限递归网络循环神经网络作为语言生成模型,完成图像描述模型构建;中文描述语句生成;本发明弥补了图像中文描述的空白,实现自动生成图像中文描述的功能,并且在描述内容的准确性上有很好的改进,为中文NLP以及计算机视觉的发展奠定了基础。
-
-