一种多通道表面等离子体共振光纤传感探针及测量方法

    公开(公告)号:CN106066312B

    公开(公告)日:2018-10-26

    申请号:CN201610352280.1

    申请日:2016-05-25

    Abstract: 本发明提供的是一种多通道表面等离子体共振光纤传感探针及测量方法。包括偏双芯光纤、单模光纤和多模光纤,偏双芯光纤与单模光纤焊接,偏双芯光纤的第一纤芯与单模光纤的纤芯对准,单模光纤一端研磨出角度为α的斜面形成第二包层传感区和纤芯传感区,单模光纤的包层表面作为第一包层传感区,多模光纤经过研磨形成角度为β的斜面,单模光纤的研磨成斜面的一端与多模光纤的研磨成斜面的一端焊接,在第一包层传感区、第二包层传感区和纤芯传感区上均镀有传感膜。本发明结合波分复用和时分复用技术,增加了传感通道,实现了多物质的检测。

    一种基于光热效应的光纤光开关

    公开(公告)号:CN104678503B

    公开(公告)日:2017-11-21

    申请号:CN201510104975.3

    申请日:2015-03-11

    Abstract: 本发明属于光纤通信领域,具体涉及的是一种基于光热效应的光纤光开关。基于光热效应的光纤光开关,包括控制光纤、接收光纤、自聚焦透镜、光致折射率变化液体、封装毛细管,控制光纤为双芯光纤,信号光在其中一芯传输,出射到光致折射率变化液体中并经自聚焦透镜耦合至接收光纤,控制光在双芯光纤的另一芯传输,另一芯纤芯端面处使得控制光能够在此端面折射,照射在信号光传输光路上,当改变控制光光源功率时,两束光交点处的液体温度改变进而导致折射率发生改变,造成信号光传输光路发生变化,偏离接收光纤,所述的控制光纤、接收光纤、自聚焦透镜、光致折射率变化液体均封装在毛细管中。本发明无需引入加热器,简化了热光开关的结构。

    分布式表面等离子体共振光纤传感器及用于液体折射率测量的方法

    公开(公告)号:CN106066313A

    公开(公告)日:2016-11-02

    申请号:CN201610352471.8

    申请日:2016-05-25

    CPC classification number: G01N21/553 G01N21/41

    Abstract: 本发明提供的是一种分布式表面等离子体共振光纤传感器及用于液体折射率测量的方法。包括阶跃折射率多模光纤、分别位于阶跃折射率多模光纤的两端的超连续谱光源与光谱仪,所述阶跃折射率多模光纤上加工有两个传感区,第一传感区和第二传感区的形状不同,两个传感区上均镀有纳米金属薄膜。超连续谱光源发出的光耦合到阶跃折射率多模光纤中并在第一传感区激发表面等离子体共振,在对应的共振波长处光强衰减,到达第二传感区再次激发表面等离子体共振,在对应的共振波长处光强也发生衰减,第一传感区和第二传感区产生的共振波长差异显著,因此实现分布式传感。本发明具有体积小、光损耗低、结构简单等突出优点,在生物医学领域有着广阔的应用前景。

    一种微纳光纤滤波器
    14.
    发明公开

    公开(公告)号:CN104914507A

    公开(公告)日:2015-09-16

    申请号:CN201510295510.0

    申请日:2015-06-02

    CPC classification number: G02B6/29316

    Abstract: 本发明提供的是一种微纳光纤滤波器。包括石英毛细管[1]、微纳光纤[2]、第一液体[3]、第二液体[4]、封装结构[5],微纳光纤[2]、第一液体[3]和第二液体[4]均封装在石英毛细管[1]中,第一液体[3]、第二液体[4]填充在微纳光纤[2]周围且交替排列。本发明的微纳光纤滤波器,当微纳光纤的部分模式满足与液体层的相位匹配条件时,将耦合进入液体层,剩余的纤芯模继续传播,实现滤波功能。通过改变液体层的折射率或者厚度,可以控制光纤中不同光波长的通过性,从而实现波长可调谐的滤波功能。本发明对波长的调谐范围更广、方法更简便、可控性更高,易与微流芯片结合,具有广阔的应用前景。

    一种多波长液滴激光器

    公开(公告)号:CN104901150A

    公开(公告)日:2015-09-09

    申请号:CN201510271055.0

    申请日:2015-05-25

    Abstract: 本发明提供的是一种多波长液滴激光器。第一捕获光源通过第一光隔离器连接第一捕获光纤,第二捕获光源通过第二光隔离器连接第二捕获光纤,第一捕获光纤和第二捕获光纤出射端的激光束形成的光阱在匹配液中稳定捕获M个液滴谐振腔,靠近各液滴谐振腔的M根微纳光纤将泵浦光耦合入各液滴谐振腔中,各液滴谐振腔中掺杂的激光染料受激输出激光并形成回音壁模式,当输出激光在液滴谐振腔中增强到一定程度时通过靠近的微纳光纤耦合输出M个波长的激光。本发明结合光纤光镊技术以及微球谐振腔理论实现了稳定的、可调的多波长液滴激光器,具有尺寸小、操控力强、结构稳定、高Q值且输出阈值低等优点。

    一种自加速类贝塞尔光束的产生装置

    公开(公告)号:CN104898287A

    公开(公告)日:2015-09-09

    申请号:CN201510312641.5

    申请日:2015-06-09

    CPC classification number: G02B27/0994

    Abstract: 本发明公开了一种自加速类贝塞尔光束的产生装置,包括光源、接收光纤、场型变换光纤和相位调制光纤,光源发出的光通过接收光纤进行接收,场型变换光纤将接收光纤传输的光场转换为高阶类贝塞尔光束,相位调制光纤对高阶类贝塞尔光束进行相位调整,得到自加速类贝塞尔光束。本发明涉及的新型自加速类贝塞尔光束具有横向加速度特性,因而能够对处于其中的微粒实现捕获和沿弯曲的轨道进行输运等操作,这种操控机制有望将特定粒子绕过障碍物输运到目标位置,可在生物、化学和医疗领域具有很好的应用前景。

    液滴回音壁模式激光器及其制作方法

    公开(公告)号:CN104852259A

    公开(公告)日:2015-08-19

    申请号:CN201510267391.8

    申请日:2015-05-22

    Abstract: 本发明提供的是一种液滴回音壁模式激光器及其制作方法。中间加工有锥区的第一单模光纤分别与泵浦光源和光谱仪连接,第二单模光纤分别连接捕获光源和环形芯光纤,环形芯光纤的前端加工成圆锥台形光纤尖,捕获光源出射的激光束经第二单模光纤注入到环形芯光纤的纤芯中,光在环形芯光纤圆锥台形光纤尖斜面处发生全反射和折射,在圆锥台形光纤尖附近形成环形汇聚光场实现光镊功能,光镊稳定捕获微液滴,将捕获的液晶微液滴靠近第一单模光纤的锥区,泵浦光源从第一单模光纤的前端注入,光谱仪在第一单模光纤的后端检测激发的激光。本发明由表面张力形成完美表面的高Q值液滴微球腔,光镊稳定控制液滴微球,该液滴回音壁模式激光器具有极低的阈值。

    一种微小粒子排布装置及其制作方法

    公开(公告)号:CN104678499A

    公开(公告)日:2015-06-03

    申请号:CN201510102576.3

    申请日:2015-03-09

    CPC classification number: G02B21/32 G21K1/00

    Abstract: 本发明涉及的是一种微小粒子排布装置,本发明也涉及一种微小粒子排布装置的制作方法。一种微小粒子排布装置,由锥状体光纤、光纤锥区镀有的吸光介质膜、光纤端面镀有的全反射膜、水槽、光隔离器、光源组成,锥状体光纤前端具有锥形结构,锥区镀有吸光介质膜,端面镀有全反射膜,锥状体光纤中传输的光经过锥区扩散至光纤表面被吸光介质膜吸收转换为热量,加热水使之对流,带动沉于水槽底部的微小粒子规则排布,全反射膜将剩余光反射,反射光传输到光隔离器被隔离。本发明的光热转换,是在光纤内部进行的,并且利用光热转换产生的热量驱动整个微小粒子排布装置。本发明中的全反射膜使得光热转换的效率更高,热损失降低,并且不易出现损毁的情况。

    基于双环状纤芯光纤的分子印迹微流控传感器及双环状纤芯光纤

    公开(公告)号:CN103900993A

    公开(公告)日:2014-07-02

    申请号:CN201410136132.7

    申请日:2014-04-04

    Abstract: 本发明提供的是一种基于双环状纤芯光纤的分子印迹微流控传感器及双环状纤芯光纤。双环状纤芯光纤具备两个双状纤芯,第一环状纤芯[1]位于环状包层[2]的内壁,第二环状纤芯[3]位于环状包层[2]内部,还具有作为样品传感场所的微流通道[4],环状纤芯[1]的内表面具有分子印迹敏感层[8],双环状纤芯光纤光纤表面具有微孔[6]和[7],两个微孔位于双环状纤芯光纤同一侧;双环状纤芯光纤[5]分别通过光纤拉锥点[9]和[10]连接入射光纤[11]及出射光纤[12],入射光纤[11]连接光纤耦合器[16],光纤耦合器[16]连接光源[17],出射光纤[12]连接光谱仪[18]。本发明结构简单,体积小,可实现高选择性的在线微流控检测。

    可调谐液体微球激光器
    20.
    发明授权

    公开(公告)号:CN104993371B

    公开(公告)日:2018-02-13

    申请号:CN201510295509.8

    申请日:2015-06-02

    Abstract: 本发明提供的是一种可调谐液体微球激光器。第一捕获光源(1)、第二捕获光源(2)和泵浦光源(3)分别通过隔离器连接至激发控制部分(7),激发控制部分(7)通过1x2耦合器(8)连接至光检测器(9),1x2耦合器(8)的另一端口为激光输出端口;激发控制部分(7)包含第一捕获光纤(7a)、第二捕获光纤(7b)、泵浦光输入光纤(7c)、激光输出光纤(7d)和液体微球(7e),液体微球位于泵浦光输入光纤和激光输出光纤之间;液体微球中包含活性激光介质并被置于外部透明液体介质(7f)中。本发明采用光纤光镊技术、光学谐振原理和激光原理,提出了一种可调谐的液体微球激光器,具有稳定性高,易操控,高Q值,输出阈值低等优点。

Patent Agency Ranking