-
公开(公告)号:CN112598658A
公开(公告)日:2021-04-02
申请号:CN202011588757.9
申请日:2020-12-29
Applicant: 哈尔滨工业大学芜湖机器人产业技术研究院
Abstract: 本发明公开了一种基于轻量级孪生卷积神经网络的病识别方法,包括如下步骤:构建细粒度病变特征联合训练模型,包括数据生成器,数据生成器与特征提取器连接,特征提取器与孪生卷积神经网络连接,孪生卷积神经网络与特征判别网络连接;对细粒度病变特征联合训练模型进行训练,基于损失函数值最小的细粒度病变特征联合训练模型生成细粒度病变特征识别模型;将待识别图像输入细粒度病变特征识别模型中,输出对应的皮肤病类别。基于孪生卷积神经网络进行正负样本联合训练的方法,模型可以提取到更具判别性的特征,有效缓解了原始数据集中病变图像特征存在类间差异小,类内差异大情况,增强了模型的特征判别能力。