-
公开(公告)号:CN116069953B
公开(公告)日:2023-06-02
申请号:CN202310200711.2
申请日:2023-03-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/36 , G06F16/35 , G06F16/387 , G06F40/279 , G06F40/30 , G06N5/022
Abstract: 公开了一种基于知识图谱叠加时空属性的MDATA知识表示方法,其将所有实体划分为主要实体和次要实体,将无实际含义的次要实体不参与表示计算,降低模型的计算开销;同时将时空属性融入关系和实体属性中,实现时空属性动态知识的有效表示;最后通过多级图架构隔离子图,实现子图间独立更新互不影响,满足动态知识的快速更新,也实现根据搜索目标选定不同层次的子图进行搜索,提高搜索速度,保证模型的可计算性和可实现性。
-
公开(公告)号:CN116069953A
公开(公告)日:2023-05-05
申请号:CN202310200711.2
申请日:2023-03-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/36 , G06F16/35 , G06F16/387 , G06F40/279 , G06F40/30 , G06N5/022
Abstract: 公开了一种基于知识图谱叠加时空属性的MDATA知识表示方法,其将所有实体划分为主要实体和次要实体,将无实际含义的次要实体不参与表示计算,降低模型的计算开销;同时将时空属性融入关系和实体属性中,实现时空属性动态知识的有效表示;最后通过多级图架构隔离子图,实现子图间独立更新互不影响,满足动态知识的快速更新,也实现根据搜索目标选定不同层次的子图进行搜索,提高搜索速度,保证模型的可计算性和可实现性。
-
公开(公告)号:CN115913791A
公开(公告)日:2023-04-04
申请号:CN202310213291.1
申请日:2023-03-08
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , G06F16/31 , G06F16/33 , G06F16/36 , G06F16/901 , G06F16/903
Abstract: 本发明公开了一种基于增量式查询索引树的MDATA动态子图匹配方法、系统及存储介质,基于MDATA在网络安全领域对安全态势表示的时空特征优势,通过MDATA实体与关系的属性特征,将攻击行为刻画为子图匹配问题中的查询图,整个网络环境刻画为数据图,当新的网络进行变化的时候动态更新数据图并设计相应的辅助数据结构,应用动态子图匹配方法实时快速准确检测出网络中出现的攻击行为,保护网络安全。本发明设计的增量式查询索引树的MDATA子图匹配方法,可以事实检测出攻击行为并且减少误报和漏报的机率,降低时间复杂度的同时提升检测速度。
-
公开(公告)号:CN115860117A
公开(公告)日:2023-03-28
申请号:CN202310149931.7
申请日:2023-02-22
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N5/02 , G06F40/30 , G06F18/241 , G06F21/57
Abstract: 公开了一种基于攻防行为的MDATA知识抽取方法及其系统,其基于深度学习的人工智能技术与自然语言处理技术,以在网络攻防演习中记录攻防行为数据,并对攻防双方的攻防数据进行联合分析,去除所有的无效攻击步骤,将所有的有效攻击步骤抽取出来作为MDATA知识以构建网络安全知识库。这样,不仅从全面而丰富的攻防行为数据中提取到攻击者攻击过程中的时空特性,还提高了知识抽取的有效性。
-
公开(公告)号:CN118101357B
公开(公告)日:2024-08-06
申请号:CN202410525137.2
申请日:2024-04-29
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , H04L69/06 , H04L69/22 , H04L47/2441 , G06N3/042 , G06N3/0442 , G06N3/08
Abstract: 本发明提供了一种结合数据包语义的网络流量分类方法,将数据包输入到网络流量处理工具,分别处理网络流量数据包的数据包头和有效载荷,分别得到二者的特征向量;将数据包头的特征向量与有效载荷的特征向量进行融合,得到整个数据包的特征向量;将特征向量中具有相同五元组的网络流量数据包归于同一通信过程,由同一通信过程中的网络流量数据包构成图,并进行分类。本发明根据不同传输层协议的特点,采用不同的方法来构图,充分表示不同的通信过程,以此利用数据包之间的上下文信息,弥补了现有方法没有利用上下文信息的缺陷。
-
公开(公告)号:CN116069955A
公开(公告)日:2023-05-05
申请号:CN202310205496.5
申请日:2023-03-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/36 , G06F16/387 , G06F16/383 , G06F40/284 , G06F40/295 , G06F40/247
Abstract: 本发明提供了一种基于MDATA模型的时空知识抽取方法,包括以下步骤:步骤1,识别时间和空间知识;通过时间触发词表、空间触发词识别输入序列中的时空知识,并将序列中的时空知识替换为概念代号;步骤2,时空知识的实体关系依赖识别,得到知识五元组;步骤3,时间、空间知识规范化处理。本发明的有益效果是:1.时空信息在文本中有很强的语言特征,本发明方法通过触发词匹配,能高效获取时空信息;2.时空信息是时间表达的关键要素,在知识图谱中,时空信息是同实体、关系紧密联系的,本发明方法通过结合时空信息来进行知识抽取任务,能有效提升知识多元组的质量;3.本发明方法通过规范化处理,能统一时空信息的表达。
-
公开(公告)号:CN119229152A
公开(公告)日:2024-12-31
申请号:CN202411756558.2
申请日:2024-12-03
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06V10/75 , G06V10/764 , G06V10/82 , G06N3/042 , G06N3/0895
Abstract: 本发明公开了一种基于密集感知图对比学习的子图匹配方法、系统、电子设备及存储介质,方法包括针对图数据集中的初始化子图,利用随机子图增强方法或密集子图增强方法获取正样本子图和非子图负样本;建立图表示学习嵌入模型,图表示学习嵌入模型基于图神经网络框架,利用图同构网络作为编码器,将图结构嵌入到高维度向量;将正样本子图和非子图负样本输入图表示学习嵌入模型并利用分类器验证结果。本发明方法将图对比学习融入子图匹配,以自监督学习方式避免了对大量标注数据的依赖;本发明提出的密集子图增强策略可以在保留数据内在属性的基础上,更好地对数据进行处理,提高模型对数据特征的学习能力,从而提升子图匹配的准确性和效率。
-
公开(公告)号:CN118013046A
公开(公告)日:2024-05-10
申请号:CN202410389726.2
申请日:2024-04-02
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/35 , G06F40/295 , G06N5/025 , G06N3/0442 , G06N3/0455 , G06F18/241
Abstract: 本发明提供了一种基于大语言模型的非结构化网络威胁情报抽取方法、系统及介质,该方法包括:利用爬虫技术从开源情报平台实时获取非结构化威胁情报数据;利用数据清洗技术剔除非结构化威胁情报数据中非主要文本内容,得到非结构化的文本情报数据,完成数据初步清洗;利用大语言模型结合Prompt设计实现对非结构化的文本情报数据进行二次处理以及知识提取;利用深度学习模型对经由大语言模型处理的结果进行二次知识抽取;结合两次知识抽取内容进一步删选,得到最终抽取结果。本发明提高了网络威胁情报的准确性和及时性,提高了对复杂多变的网络威胁的识别和分析能力,能够更好地适应特定领域的需求。
-
公开(公告)号:CN115842684B
公开(公告)日:2023-05-12
申请号:CN202310138994.2
申请日:2023-02-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40
Abstract: 本申请涉及一种基于MDATA子图匹配的多步攻击检测方法,本申请方法包括:构建预设多步攻击事件的MDATA知识图谱查询图;利用数据查询优化器将MDATA知识图谱查询图分解成若干个子查询图;将若干个子查询图储存至SQM‑Tree辅助的数据结构中,SQM‑Tree辅助的数据结构用于跟踪与合并数据;将若干个子查询图匹配MDATA知识图谱数据图中的多步攻击数据,MDATA知识图谱数据图根据历史告警日志数据和正常系统日志数据创建;输出子查询图与MDATA知识图谱数据图的匹配结果,将匹配结果与SQM‑Tree辅助的数据结构进行对比得到预设多步攻击事件的检测结果,有效提高检测效率。
-
公开(公告)号:CN115842684A
公开(公告)日:2023-03-24
申请号:CN202310138994.2
申请日:2023-02-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40
Abstract: 本申请涉及一种基于MDATA子图匹配的多步攻击检测方法,本申请方法包括:构建预设多步攻击事件的MDATA知识图谱查询图;利用数据查询优化器将MDATA知识图谱查询图分解成若干个子查询图;将若干个子查询图储存至SQM‑Tree辅助的数据结构中,SQM‑Tree辅助的数据结构用于跟踪与合并数据;将若干个子查询图匹配MDATA知识图谱数据图中的多步攻击数据,MDATA知识图谱数据图根据历史告警日志数据和正常系统日志数据创建;输出子查询图与MDATA知识图谱数据图的匹配结果,将匹配结果与SQM‑Tree辅助的数据结构进行对比得到预设多步攻击事件的检测结果,有效提高检测效率。
-
-
-
-
-
-
-
-
-