-
公开(公告)号:CN118918521A
公开(公告)日:2024-11-08
申请号:CN202411413830.7
申请日:2024-10-11
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(威海)
Abstract: 本发明属于目标视频片段定位领域,提供了一种基于多机协同的目标视频片段定位方法及系统,方法包括获取时间同步的多视角的单帧图像;进行各图像的特征匹配,依据特征匹配关系建立不同视角图像之间的对应关系;基于建立的对应关系,进行多视角图像的融合,得到完备的全景视频特征;响应于查询文本,基于全景视频特征,进行目标视频片段定位。本发明通过特征匹配建立不同视角之间的对应关系,利用视角融合剔除重复冗余信息,生成完整的全景视图,实现不同视角的互补,基于视角融合后的视频实现目标视频片段的高效定位;克服了现有技术中多视角视频匹配难、融合差的缺陷。
-
公开(公告)号:CN119229478B
公开(公告)日:2025-01-28
申请号:CN202411755122.1
申请日:2024-12-03
Applicant: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 天津理工大学 , 合肥工业大学
IPC: G06V40/10 , G06V10/26 , G06V10/44 , G06V10/74 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明属于计算机视觉技术领域,提供了一种基于结合人体语义与三维重构的行人搜索方法及系统。步骤如下:首先获取待检索的行人图像,将图像输入训练好的换衣行人特征提取网络,提取在换衣情况下的行人特征,换衣行人重特征提取网络通过换衣模块扩充数据集样本,使模型重点学习衣服区域外的行人特征表示,减轻衣服变化带来的干扰,对行人图像进行三维建模,仅保留行人头部,学习额外的行人体型和头部特征,最后将原始图像特征与三维建模图像特征进行特征融合得到全局的行人特征,利用得到的待检索图像的行人特征与检索图库中的行人特征进行相似度匹配,根据相似性得分进行排序得到行人检索结果。本发明可以大幅度提升行人搜索的准确率和鲁棒性。
-
公开(公告)号:CN118897905B
公开(公告)日:2025-01-21
申请号:CN202411388560.9
申请日:2024-10-08
Applicant: 山东大学 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 浙江大华技术股份有限公司 , 山东省计算中心(国家超级计算济南中心) , 哈尔滨工业大学(威海)
IPC: G06F16/735 , G06F16/783 , G06F16/738 , G06N3/0455 , G06N3/08
Abstract: 本发明属于视频检索技术领域,提供了一种基于细粒度时空关联建模的视频片段定位方法及系统,其技术方案为:获取视频片段,利用时空查询表示,隐式挖掘视频片段中潜在所有物体信息;随后,基于时空表示多维交互模块,充分建模物体间时空关联关系;之后,通过有机融合局部和全局表示,全面提升视频片段的表示能力;最后,依据视频片段表示与用户查询表示相似性分数确定目标视频片段。本发明克服了现有技术中依赖离线物体检测工具进行物体时空信息提取、物体细粒度交互信息建模不充分等导致视频理解不佳的问题。
-
公开(公告)号:CN119295886A
公开(公告)日:2025-01-10
申请号:CN202411844794.X
申请日:2024-12-16
Applicant: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 合肥工业大学
IPC: G06V10/80 , G06V10/44 , G06V10/774 , G06V10/82 , G06V20/62 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种基于多尺度特征融合的X‑ray图像违禁品检测方法,属于图像处理技术领域。其包括以下步骤:获取X‑ray违禁品数据集,并将数据集划分为训练集和测试集;构建基于多尺度特征融合的X‑ray图像违禁品目标检测模型,所述模型包括图像分支、自适应高低通滤波器模块、文本分支、Neck层和Head头;训练集中图像输入到模型中对模型进行训练;采用损失函数对模型进行优化,得到训练好的模型;测试集中图像输入到训练好的模型中,得到违禁品检测结果。本发明通过图像文本的联合训练,在实时监测任务中提升性能的同时更加高效,减少计算量和内存占用,解决了复杂场景中图像边界细节模糊问题。
-
公开(公告)号:CN118918521B
公开(公告)日:2024-12-17
申请号:CN202411413830.7
申请日:2024-10-11
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(威海)
Abstract: 本发明属于目标视频片段定位领域,提供了一种基于多机协同的目标视频片段定位方法及系统,方法包括获取时间同步的多视角的单帧图像;进行各图像的特征匹配,依据特征匹配关系建立不同视角图像之间的对应关系;基于建立的对应关系,进行多视角图像的融合,得到完备的全景视频特征;响应于查询文本,基于全景视频特征,进行目标视频片段定位。本发明通过特征匹配建立不同视角之间的对应关系,利用视角融合剔除重复冗余信息,生成完整的全景视图,实现不同视角的互补,基于视角融合后的视频实现目标视频片段的高效定位;克服了现有技术中多视角视频匹配难、融合差的缺陷。
-
公开(公告)号:CN119379524B
公开(公告)日:2025-05-06
申请号:CN202411918332.8
申请日:2024-12-25
Applicant: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 合肥工业大学
IPC: G06T1/00 , G06N3/0455 , G06N3/0475 , G06N3/09 , G06N3/094
Abstract: 本发明涉及一种基于多重水印融合与跨域学习的图像伪造主动防御方法,属于计算机视觉技术领域。其包括以下步骤:获取待处理图像;待处理图像经过水印编码器进行不可见水印嵌入和可见水印嵌入,分别得到嵌入不可见水印的图像和嵌入可见水印的图像;嵌入不可见水印的图像经过噪声层进行处理,得到噪声图像;嵌入可见水印的图像经过噪声层进行处理,通过可见水印联合优化在嵌入随机噪声的图像位置产生明显的虚假警示标识;噪声图像经过水印解码器进行图像的溯源和检测,判断图像的真实性;进行损失函数监督训练。本发明方法能够精准的判断图像是否经过深度伪造以及验证图像来源的真实性。
-
公开(公告)号:CN119478794B
公开(公告)日:2025-04-29
申请号:CN202510051849.X
申请日:2025-01-14
Applicant: 天津理工大学 , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 合肥工业大学
IPC: G06V20/40 , G06V10/80 , G06T17/00 , G06F18/213 , G06F18/25 , G06F16/783
Abstract: 本发明涉及计算机视觉和自然语言处理技术领域,尤其涉及一种基于渐进式交互和多模态对齐的视频片段句子定位算法。步骤如下:首先将与视频相关的所有查询句子根据该查询句子对应的视频片段在视频中的顺序进行排序后与视频特征和在特征维度进行拼接,再将其经过多模态对齐模块提取视频与查询句子特征各自的模态内信息以及两个模态之间的信息,随后根据与查询句子交互后的视频特征生成多个候选片段,通过分组候选片段交互模块学习候选片段之间的关系,然后通过度量学习缩小对应的候选片段特征与查询句子特征对的差异,最后将所有候选片段特征与单个查询句子特征计算匹配分数,分数高的作为预测结果。本发明可以精准地对视频片段进行定位。
-
公开(公告)号:CN119625792A
公开(公告)日:2025-03-14
申请号:CN202510151987.5
申请日:2025-02-12
Applicant: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 合肥工业大学
IPC: G06V40/10 , G06V10/82 , G06V10/764 , G06V10/74 , G06N3/0464
Abstract: 本发明涉及一种基于强化共性特征的换衣行人重识别方法及系统,属于计算机视觉技术领域。其包括以下步骤:获取待检索的行人图像数据集,并在数据集中确定原始图像和与原始图像相同身份标签的图像;数据集中图像经过衣服混合与匹配模块、人体身份增强流模块以及ResNet50模型进行特征提取,然后经过共性特征提取模块生成显著图,最后经过分类器得到分类结果;通过损失函数对前述过程进行迭代优化,得到训练好的ResNet50模型;将待检测图像输入到训练好的模型中,得到检索特征;将检索特征与检索库中的行人图像特征进行相似度匹配,得到行人重识别结果。本发明能够提取适应换衣场景下的更有鲁棒性和判别性的特征。
-
公开(公告)号:CN119379524A
公开(公告)日:2025-01-28
申请号:CN202411918332.8
申请日:2024-12-25
Applicant: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 合肥工业大学
IPC: G06T1/00 , G06N3/0455 , G06N3/0475 , G06N3/09 , G06N3/094
Abstract: 本发明涉及一种基于多重水印融合与跨域学习的图像伪造主动防御方法,属于计算机视觉技术领域。其包括以下步骤:获取待处理图像;待处理图像经过水印编码器进行不可见水印嵌入和可见水印嵌入,分别得到嵌入不可见水印的图像和嵌入可见水印的图像;嵌入不可见水印的图像经过噪声层进行处理,得到噪声图像;嵌入可见水印的图像经过噪声层进行处理,通过可见水印联合优化在嵌入随机噪声的图像位置产生明显的虚假警示标识;噪声图像经过水印解码器进行图像的溯源和检测,判断图像的真实性;进行损失函数监督训练。本发明方法能够精准的判断图像是否经过深度伪造以及验证图像来源的真实性。
-
公开(公告)号:CN119229478A
公开(公告)日:2024-12-31
申请号:CN202411755122.1
申请日:2024-12-03
Applicant: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 天津理工大学 , 合肥工业大学
IPC: G06V40/10 , G06V10/26 , G06V10/44 , G06V10/74 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明属于计算机视觉技术领域,提供了一种基于结合人体语义与三维重构的行人搜索方法及系统。步骤如下:首先获取待检索的行人图像,将图像输入训练好的换衣行人特征提取网络,提取在换衣情况下的行人特征,换衣行人重特征提取网络通过换衣模块扩充数据集样本,使模型重点学习衣服区域外的行人特征表示,减轻衣服变化带来的干扰,对行人图像进行三维建模,仅保留行人头部,学习额外的行人体型和头部特征,最后将原始图像特征与三维建模图像特征进行特征融合得到全局的行人特征,利用得到的待检索图像的行人特征与检索图库中的行人特征进行相似度匹配,根据相似性得分进行排序得到行人检索结果。本发明可以大幅度提升行人搜索的准确率和鲁棒性。
-
-
-
-
-
-
-
-
-