-
公开(公告)号:CN117852616B
公开(公告)日:2024-05-31
申请号:CN202410229872.9
申请日:2024-02-29
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于增强拒绝采样训练的大语言模型对齐微调方法和系统,涉及人工智能技术领域,包括:基于有监督微调后的大语言模型,为预设指令请求文本生成N条响应文本;基于训练好的奖励模型对每条响应文本进行评估,得到奖励分数;将N条响应文本按照对应的奖励分数由高到低排序,并选取前k条响应文本组成目标样本集;基于预设加权函数,计算每条响应文本对应的数据权重;基于预设指令请求文本、目标样本集中的响应文本和数据权重构建加权微调数据集,并基于加权微调数据集对有监督微调后的大语言模型进行对齐微调,得到目标大语言模型。本发明缓解了现有技术存在的过拟合风险高、易受有噪奖励分数干扰的技术问题。
-
公开(公告)号:CN117852616A
公开(公告)日:2024-04-09
申请号:CN202410229872.9
申请日:2024-02-29
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于增强拒绝采样训练的大语言模型对齐微调方法和系统,涉及人工智能技术领域,包括:基于有监督微调后的大语言模型,为预设指令请求文本生成N条响应文本;基于训练好的奖励模型对每条响应文本进行评估,得到奖励分数;将N条响应文本按照对应的奖励分数由高到低排序,并选取前k条响应文本组成目标样本集;基于预设加权函数,计算每条响应文本对应的数据权重;基于预设指令请求文本、目标样本集中的响应文本和数据权重构建加权微调数据集,并基于加权微调数据集对有监督微调后的大语言模型进行对齐微调,得到目标大语言模型。本发明缓解了现有技术存在的过拟合风险高、易受有噪奖励分数干扰的技术问题。
-
公开(公告)号:CN117808095A
公开(公告)日:2024-04-02
申请号:CN202410206258.0
申请日:2024-02-26
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N5/025 , G06N5/04 , G06F40/289 , G06F40/247
Abstract: 本发明公开了一种对抗攻击样本生成方法和装置、电子设备,属于人工智能安全技术领域,所述方法包括:对第一大语言模型进行全量微调,得到第二模型;使用BERT‑Attack算法对所述第二模型进行攻击实验,得到原始攻击样本;使用原始攻击样本对第二模型进行知识蒸馏处理,得到第三模型;使用攻击算法和原始攻击样本,对第三模型进行文本对抗攻击,得到迁移攻击样本;确定原始攻击样本与迁移攻击样本的可迁移性;依据可迁移性、原始攻击样本和迁移攻击样本,进行攻击算法自适应性改进。本发明提供的对抗攻击样本生成方案,能够增加所生成的对抗攻击样本在不同环境和模型下的可迁移性,提高攻击的鲁棒性和可靠性。
-
公开(公告)号:CN117787421A
公开(公告)日:2024-03-29
申请号:CN202410201337.2
申请日:2024-02-23
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N5/04 , G06F40/166
Abstract: 本发明公开了一种基于思维链确定问题答案的方法和装置、电子设备,属于人工智能技术领域,所述方法包括:获取待解答问题以及多个样本数据,其中,每个所述样本数据包括:一个问题和所述问题对应的第一求解计划;将所述待解答问题与多个所述样本数据进行拼接后输入模型,得到待解答问题对应的第二求解计划;控制所述模型按照所述第二求解计划中的每个步骤执行求解,直至完成最后一个步骤,得到目标答案。本申请提供的基于思维链确定问题答案的方案,既能够赋予思维链纠错能力,又可以人为或者模型自动干预对第二求解计划中的第一步骤进行修正。
-
公开(公告)号:CN119670718A
公开(公告)日:2025-03-21
申请号:CN202510185747.7
申请日:2025-02-20
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 中国科学院计算技术研究所
IPC: G06F40/189 , G06F40/30 , G06F16/334 , G06F16/36 , G10L15/06 , G10L15/22
Abstract: 本发明提供一种基于两阶段解耦方式的语音大模型模态对齐方法及装置,涉及自然语言处理技术领域。该方法包括:获取预训练的语音数据集以及预训练的任务指令文本;构建初始的语音大模型,根据预训练的语音数据集以及预训练的任务指令文本,采用两阶段解耦方式处对初始的语音大模型进行预训练,获得预训练好的语音大模型;采用LoRA微调技术对预训练好的语音大模型进行指令微调,获得训练好的语音大模型;将待处理的语音数据和语音数据对应的指令,输入训练好的语音大模型中进行处理,输出与语音数据对应的指令需求相匹配的文本。采用本发明可解决在特征解耦导致信息损失的问题,采用本发明可提高语音大模型对任务分析的性能。
-
公开(公告)号:CN118628614B
公开(公告)日:2024-12-27
申请号:CN202411107024.7
申请日:2024-08-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明涉及人工智能技术领域,特别是指一种基于少样本学习的大语言模型的图到文本生成方法及装置。方法包括:构建正例样本和负例样本,对初始的图神经网络进行训练,得到图编码器,设定四个不同的训练任务,获取分别对应的训练样本,对初始的线性网络进行训练,得到图到文本投影器;选取少样本学习样本,使用少样本学习样本对预训练的大语言模型进行微调,根据图编码器、图到文本投影器以及微调后的大语言模型,得到训练好的基于大语言模型的图到文本生成模型;获取待生成图,将待生成图输入训练好的基于大语言模型的图到文本生成模型,得到待生成图对应的生成文本。采用本发明,可以降低对大规模标注数据集的依赖,提高训练的模型的准确度。
-
公开(公告)号:CN118643142B
公开(公告)日:2024-10-29
申请号:CN202411117913.1
申请日:2024-08-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/332 , G06F16/33 , G06F16/36 , G06N5/022 , G06N5/04
Abstract: 本发明提供一种面向大语言模型的结构化知识注入方法及系统,涉及人工智能技术领域。所述方法包括:利用命名实体识别技术对问题中的实体进行识别标记;在知识图谱上链接识别出的实体;检索两两实体之间的可能路径上的实体及其关系,构建知识子图;根据实体对与问题的相关性,对知识子图上的实体对进行打分;利用图神经网络对知识子图进行建模,并利用打分的分数引导图神经网络消除噪音;基于知识子图选取图谱嵌入化知识,并映射到大语言模型的参数化知识空间,得到对齐知识;将对齐知识注入大语言模型的前馈神经网络参数中进行知识性问答。本发明能够提高大语言模型对知识检索以及知识利用的能力。
-
公开(公告)号:CN118643142A
公开(公告)日:2024-09-13
申请号:CN202411117913.1
申请日:2024-08-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/332 , G06F16/33 , G06F16/36 , G06N5/022 , G06N5/04
Abstract: 本发明提供一种面向大语言模型的结构化知识注入方法及系统,涉及人工智能技术领域。所述方法包括:利用命名实体识别技术对问题中的实体进行识别标记;在知识图谱上链接识别出的实体;检索两两实体之间的可能路径上的实体及其关系,构建知识子图;根据实体对与问题的相关性,对知识子图上的实体对进行打分;利用图神经网络对知识子图进行建模,并利用打分的分数引导图神经网络消除噪音;基于知识子图选取图谱嵌入化知识,并映射到大语言模型的参数化知识空间,得到对齐知识;将对齐知识注入大语言模型的前馈神经网络参数中进行知识性问答。本发明能够提高大语言模型对知识检索以及知识利用的能力。
-
公开(公告)号:CN118628614A
公开(公告)日:2024-09-10
申请号:CN202411107024.7
申请日:2024-08-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明涉及人工智能技术领域,特别是指一种基于少样本学习的大语言模型的图到文本生成方法及装置。方法包括:构建正例样本和负例样本,对初始的图神经网络进行训练,得到图编码器,设定四个不同的训练任务,获取分别对应的训练样本,对初始的线性网络进行训练,得到图到文本投影器;选取少样本学习样本,使用少样本学习样本对预训练的大语言模型进行微调,根据图编码器、图到文本投影器以及微调后的大语言模型,得到训练好的基于大语言模型的图到文本生成模型;获取待生成图,将待生成图输入训练好的基于大语言模型的图到文本生成模型,得到待生成图对应的生成文本。采用本发明,可以降低对大规模标注数据集的依赖,提高训练的模型的准确度。
-
公开(公告)号:CN117787421B
公开(公告)日:2024-05-31
申请号:CN202410201337.2
申请日:2024-02-23
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N5/04 , G06F40/166
Abstract: 本发明公开了一种基于思维链确定问题答案的方法和装置、电子设备,属于人工智能技术领域,所述方法包括:获取待解答问题以及多个样本数据,其中,每个所述样本数据包括:一个问题和所述问题对应的第一求解计划;将所述待解答问题与多个所述样本数据进行拼接后输入模型,得到待解答问题对应的第二求解计划;控制所述模型按照所述第二求解计划中的每个步骤执行求解,直至完成最后一个步骤,得到目标答案。本申请提供的基于思维链确定问题答案的方案,既能够赋予思维链纠错能力,又可以人为或者模型自动干预对第二求解计划中的第一步骤进行修正。
-
-
-
-
-
-
-
-
-