-
公开(公告)号:CN106848283A
公开(公告)日:2017-06-13
申请号:CN201710200786.5
申请日:2017-03-30
Applicant: 吉林大学
CPC classification number: H01M4/46 , B82Y30/00 , B82Y40/00 , H01M4/362 , H01M4/38 , H01M4/602 , H01M10/052
Abstract: 本发明公开了一种纳米氧化铝/硫/聚吡咯复合材料的制备方法,属于先进纳米复合材料制备工艺技术领域。所述的纳米氧化铝/硫/聚吡咯复合材料以聚吡咯为导电相、纳米氧化铝为吸附相,以此增强该复合材料的充放电循环性能。选用升华硫、纳米氧化铝、对甲基苯磺酸钠、氯化铁、无水乙醇、吡咯单体和去离子水,球磨、熔融扩散、化学氧化聚合反应后,经真空干燥得到纳米氧化铝/硫/聚吡咯复合材料。该法制备工艺简单、成本低、所制得的纳米氧化铝/硫/聚吡咯复合材料具有优良的电化学性能。
-
公开(公告)号:CN105118997A
公开(公告)日:2015-12-02
申请号:CN201510622092.1
申请日:2015-09-28
Applicant: 吉林大学
IPC: H01M4/583 , H01M4/1393 , H01M10/0525
CPC classification number: H01M4/583 , H01M4/1393 , H01M4/362 , H01M10/0525
Abstract: 本发明提供一种基于聚吡咯碳化的无定形碳与多壁纳米碳管复合电极材料的制备方法,属于纳米复合材料制备工艺技术领域,具体制备步骤如下:a.在甲基橙水溶液中依次加入三氯化铁和吡咯后室温下搅拌得到聚吡咯;b.将聚吡咯洗涤至中性、真空干燥后在管式炉中700-970℃下进行1-4小时碳化处理得到无定形碳;c.将无定形碳和多壁纳米碳管在乙醇中磁力搅拌处理4-9小时,在50-70℃下真空干燥10-30小时,得到基于聚吡咯碳化的无定形碳与多壁纳米碳管复合电极材料,可作为锂离子电池负极材料和超级电容器电极材料,电化学性能优良,无记忆效应,无污染和自放电率低,本发明提供的制备方法成本低廉和工艺简单。
-
公开(公告)号:CN115440965B
公开(公告)日:2024-10-25
申请号:CN202211253596.7
申请日:2022-10-13
Applicant: 吉林大学
IPC: H01M4/36 , C01B32/324 , C01B32/348
Abstract: 本发明涉及电极复合材料技术领域,具体涉及沉积碱金属的氮硫共掺杂介孔碳复合材料,采用介孔结构的活性炭作为三维基体材料,介孔结构可以增强该复合材料的离子传导率,为复合材料的优异的电化学性能奠定基础;介孔结构还可以消除锂(钠/钾)化/脱锂(钠/钾)化过程中的体积膨胀,以此提升电池的电化学性能。同时在三维基体材料上含有含氮官能团和含硫官能团,可以为锂/钠/钾碱金属提供亲和位点,以此增强该复合材料的亲和力和离子传导率,还可以提高金属单质的沉积量,有利于锂/钠/钾金属的成核和均匀沉积,以此抑制枝晶的生长和死锂(钠/钾)的形成,有利于提升电池的循环稳定性和使用寿命。同时本发明还提供了其制备方法。
-
公开(公告)号:CN113862506A
公开(公告)日:2021-12-31
申请号:CN202111201179.3
申请日:2021-10-15
Applicant: 吉林大学 , 铜陵富翔铜再生循环利用有限公司
Abstract: 本发明提供一种提高金属铜抗氧化能力的方法,将质量分数为99.8%‑98%的铜与质量分数为0.1%‑1%的钛和质量分数为0.1%‑1%的铝混合;在真空熔炼炉内经过洗气程序、熔炼钛锭除氧、反复熔炼混合物料3‑5次后形成铜钛铝合金;再将铜钛铝合金打磨抛光,电解抛光,在通有保护气体的管式炉中退火,退火温度为600℃‑900℃;退火炉内保温480min‑1440min,并在程序控制下用720min‑1440min降温至100℃后随炉冷至室温,在保护气氛中退火处理,两种添加元素偏析到合金表面,形成Al2O3‑TiO2双层复合膜保护层,提高了金属铜的抗氧化能力。
-
公开(公告)号:CN110387588B
公开(公告)日:2021-07-16
申请号:CN201910752517.9
申请日:2019-08-15
Applicant: 吉林大学
Abstract: 本发明涉及一种利用Janus并列针头静电纺丝制备核壳结构的微纳米纤维膜的方法,这种针头末段由双通道组成,前段双通道合并成单通道,从而达到将两种溶液混合进一步得到核壳结构纤维的目的。静电纺丝过程包括如下步骤:将高分子溶解在溶剂中搅拌至完全溶解,或加热熔融得到纺丝前驱液;用注射器分别抽取两种不同高分子溶液或熔体通过乳胶管连接于Janus并列针头的双通道端;高压电源的正极连接于Janus并列针头的单通道段,负极连接于接收装置;设置纺丝参数,接通电源,纺丝一段时间,得到具有核壳结构的纳米纤维膜。本发明制备方法简单,核壳结构可控,成本较低,可以用于过滤吸附、药物担载、组织工程支架等领域。
-
公开(公告)号:CN110578070B
公开(公告)日:2021-04-13
申请号:CN201911044881.6
申请日:2019-10-30
Applicant: 吉林大学
Abstract: 本发明提供一种自生非金属氧化物复合膜提高铜抗氧化能力的方法,通过向Cu中添加微量Si元素使其表面形成Cu@SiO2复合物附着膜提高金属Cu及其制品的高温抗氧化能力。本方法是将微量Si与Cu混合,在真空熔炼炉中反复熔炼,制成轻掺杂CuSi合金。添加的微量元素Si在Ar‑20%H2气氛中退火通过偏析作用使合金中的微量Si偏析到合金表面,与退火气氛中残余的O2反应生成SiO2,进而形成熔点较高且性能稳定的Cu@SiO2复合物附着膜,使CuSi合金在高温纯氧的条件下保证Cu金属基体不被氧化。该方法保证了铜基零部件及设备使用的可靠性,降低成本,减少工业浪费。
-
公开(公告)号:CN109950503B
公开(公告)日:2021-03-02
申请号:CN201910261271.5
申请日:2019-04-02
Applicant: 吉林大学
Abstract: 本发明涉及一种CoMoOx/碳/硫复合纳米材料的制备方法、锂离子电池负极及锂离子半电池。本发明结合水热法、金属氧化物表面硫化改性技术以及锂电池的组装与电化学测试,通过对钼酸钴纳米线进行碳化和硫化,作为锂电的负极材料组装成半电池,该负极材料使用安全并且廉价的钼酸钴为原料,成本较低,安全性高。该复合纳米结构具有超大的比表面积,能同时增强电子和电解液离子的传输,金属氧化物的选择保证了纳米材料具备一定的初始容量,碳化增强了材料的导电性,而硫化的表面改性进一步增多了该负极材料的反应活性位点。
-
公开(公告)号:CN108448086B
公开(公告)日:2020-09-15
申请号:CN201810207875.7
申请日:2018-03-14
Applicant: 吉林大学
IPC: H01M4/36 , H01M4/38 , H01M4/60 , H01M4/62 , H01M10/052
Abstract: 本发明公开了一种硫化的富含聚硫醇的锂硫电池正极复合材料,所述的锂硫电池正极复合材料还原氧化石墨烯/聚硫醇/硫复合材料以还原氧化石墨烯作为导电改性相、聚硫醇提供与硫的共聚位点,以此增强该复合材料的容量和充放电稳定性。选用升华硫、氧化石墨烯、L‑半胱氨酸盐酸盐、氨水和去离子水,以90℃为聚合、还原温度,真空抽滤后,经冷冻干燥后,得到富含聚硫醇的还原氧化石墨烯。然后,将其与升华硫混合并经过热处理得到硫化的富含聚硫醇的还原氧化石墨烯。该方法生产工艺简单、成本较低,且所得到的硫化的富含聚硫醇的还原氧化石墨烯复合材料具有优良的电化学性能。
-
公开(公告)号:CN110592421A
公开(公告)日:2019-12-20
申请号:CN201911038477.8
申请日:2019-10-29
Applicant: 吉林大学
Abstract: 本发明涉及金属材料领域,具体公开了一种铜合金、铜合金板材及其制备方法和应用,所述铜合金具有良好的抗腐蚀性能,通过将微量钛元素与金属铜熔炼为合金,通过热处理工艺以及在由氩气和氢气组成的混合气体中退火使Ti偏析到合金表面,进而使金属铜表面附着TiO2复合膜,因此能够很好的保护内部金属铜不与周围氧、水蒸气等反应,进而实现提高以铜为主要原材料的汽车零部件的表面抗氧化能力,无需使用电镀方法进行防腐,性能优良,解决了现有铜制品因采用电镀防腐而造成环境污染的技术问题。
-
公开(公告)号:CN105958032B
公开(公告)日:2018-12-11
申请号:CN201610517654.0
申请日:2016-07-04
Applicant: 吉林大学
CPC classification number: Y02E60/122 , Y02P70/54
Abstract: 本发明公开了一种通过掺杂镍元素提高铁酸锌充放电循环能力的方法及应用,涉及锂离子电池负极复合材料制备领域。通过在铁酸锌中掺杂镍元素形成一种三元金属氧化物,选用六水硝酸镍、六水硝酸锌、七水硫酸亚铁、尿素和氟化铵以一定摩尔质量混合搅拌形成均匀的混合溶液,经水热合成、煅烧后,得到NixZn1‑xFe2O4(0
-
-
-
-
-
-
-
-
-