一种基于联邦学习的车联网时延敏感型应用卸载方法

    公开(公告)号:CN115767634A

    公开(公告)日:2023-03-07

    申请号:CN202211167527.4

    申请日:2022-09-23

    Applicant: 吉林大学

    Abstract: 本发明公开了一种基于联邦学习的车联网时延敏感型应用卸载方法,所述方法包括如下步骤:步骤一、确定基于MEC的车联网网络架构;步骤二、建立应用程序模型;步骤三:确定MEC节点协作方案;步骤四、建立系统模型并得到优化问题;步骤五、设计DDQN与FL相结合的算法并求解优化问题。该方法将时延敏感型应用划分为互相有依赖关系的子任务,提供了一种MEC节点协作方案,并将该问题建模为一个以运算资源为约束条件、最小化总计算时延为目标的优化问题,利用联邦学习与深度强化学习相结合的方式来求解该问题,在得到可以使总计算时延最小的卸载方法的基础上,还可以保障用户的隐私安全,避免用户私人数据泄露。

Patent Agency Ranking