-
公开(公告)号:CN112348015B
公开(公告)日:2022-11-18
申请号:CN202011238231.8
申请日:2020-11-09
Applicant: 厦门市美亚柏科信息股份有限公司
IPC: G06V20/62 , G06V10/22 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/04 , G06N3/08 , G06N5/04
Abstract: 本发明公开了一种基于级联神经网络的文字检测方法、装置及存储介质,该方法通过收集样本,并对样本进行处理生成数据集;搭建第一全卷积网络,通过数据集对第一全卷积网络进行训练至网络收敛,并通过训练后的第一全卷积网络对数据集进行推理,获得回归结果;搭建第二全卷积网络,通过回归结果对第二全卷积网络进行训练至网络收敛;将待验证图片输入第一全卷积网络,若第一全卷积网络判断在滑窗范围内存在文字,则裁剪下滑窗范围内的区域做双线性插值尺度变换并输入第二全卷积网络,通过第二全卷积网络判断区域是否为文字区域。该方法具有更好的泛化性能,并能够在保证检测准确率与召回率的同时,降低模型大小,从而提升文字检测算法性能。
-
公开(公告)号:CN113822328B
公开(公告)日:2022-09-16
申请号:CN202110894433.6
申请日:2021-08-05
Applicant: 厦门市美亚柏科信息股份有限公司
Abstract: 本发明涉及防御对抗样本攻击的图像分类方法、终端设备及存储介质,该方法中包括:S1:采集原始图像和其对应的对抗样本;S2:构建图像分类模型,图像分类模型采用深度神经网络结构,并在深度神经网络中添加去噪模块,去噪模块包括非局部均值模块和自注意力机制模块;S3:将原始图片和对应的对抗样本混合后对图像分类模型进行训练;S4:采用训练后的图像分类模型对图像进行分类。本发明通过端到端的方式在卷积网络的中间层添加去噪模块来降低对抗图像的噪声扰动,去噪模块由非局部均值模块和自注意力机制模块相结合,能够达到去噪目的且能够与任意卷积层相衔接,从而提高模型的对抗鲁棒性,有效解决了对抗样本攻击深度学习系统存在的隐患。
-
公开(公告)号:CN113807392B
公开(公告)日:2022-09-16
申请号:CN202110896904.7
申请日:2021-08-05
Applicant: 厦门市美亚柏科信息股份有限公司
IPC: G06V10/764 , G06V10/80 , G06V10/774 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种基于多预处理特征融合的篡改图像鉴别方法,其可包括以下步骤:S1、收集样本,构建训练集与验证集;S2、搭建多预处理特征提取模块;S3、将训练集中的每一张图像通过多预处理特征提取模块处理得到相应特征,并对同一张图像获取到的特征以通道维度合并,形成该图像的特征张量;S4、将特征张量输入神经网络模型进行训练直到损失收敛;S5、将验证集输入训练好的神经网络模型,获取输出结果,若输出结果大于预设阈值,则判定该图像为篡改图像。本发明通过提前提取先验特征的方式,使得模型更容易拟合到相关特征,更易于训练,能够实现对多种篡改方式进行同时鉴别。
-
公开(公告)号:CN113807337B
公开(公告)日:2022-09-06
申请号:CN202110940583.6
申请日:2021-08-17
Applicant: 厦门市美亚柏科信息股份有限公司
IPC: G06V30/16 , G06V30/148 , G06V30/19
Abstract: 本发明涉及一种基于图连通的文本检测方法、终端设备及存储介质,该方法中包括:S1:采集具有单字符文本标注的图像组成训练集;S2:构建文字检测模型,通过训练集对模型进行训练;S3:将待处理图像输入训练后的文字检测模型中,剔除置信度较低的预测文本框后,将其他预测文本框组成集合B;S4:计算集合B中每两个预测文本框之间的第一参数GIoU和第二参数DHIoU;S5:将集合B中所有的预测文本框作为图节点构建无向图,若两节点之间满足GIoU小于第一阈值且DHIoU小于第二阈值,则设定两节点之间连通,否则不连通;S6:计算无向图的连通分量,并计算每个连通分量所包含节点的最小外接矩形,将最小外接矩形作为文本框。本发明能够快速的准确进行文本区域定位。
-
公开(公告)号:CN113807337A
公开(公告)日:2021-12-17
申请号:CN202110940583.6
申请日:2021-08-17
Applicant: 厦门市美亚柏科信息股份有限公司
Abstract: 本发明涉及一种基于图连通的文本检测方法、终端设备及存储介质,该方法中包括:S1:采集具有单字符文本标注的图像组成训练集;S2:构建文字检测模型,通过训练集对模型进行训练;S3:将待处理图像输入训练后的文字检测模型中,剔除置信度较低的预测文本框后,将其他预测文本框组成集合B;S4:计算集合B中每两个预测文本框之间的第一参数GIoU和第二参数DHIoU;S5:将集合B中所有的预测文本框作为图节点构建无向图,若两节点之间满足GIoU小于第一阈值且DHIoU小于第二阈值,则设定两节点之间连通,否则不连通;S6:计算无向图的连通分量,并计算每个连通分量所包含节点的最小外接矩形,将最小外接矩形作为文本框。本发明能够快速的准确进行文本区域定位。
-
公开(公告)号:CN113591936A
公开(公告)日:2021-11-02
申请号:CN202110779118.9
申请日:2021-07-09
Applicant: 厦门市美亚柏科信息股份有限公司
Abstract: 本发明涉及一种车辆姿态估计方法、终端设备及存储介质,该方法中包括:S1:采集包含车辆的图像,并对图像中车辆对应的姿态和车辆目标的边界框进行标注,将标注后的图像组成训练集;S2:构建基于YOLOv2网络的车辆姿态估计模型,通过训练集对车辆姿态估计模型进行训练;S3:通过训练后的车辆姿态估计模型对车辆姿态和车辆目标进行估计。本发明可以和智能交通系统的检测任务融合为一个主干网络,具有较好的泛化性,不需要额外设计负责车辆姿态估计的网络结构,只需要修改检测器的输入和输出就能实现这种车辆姿态估计,在现实场景中具有较强的应用,且减少了硬件设施的消耗。
-
公开(公告)号:CN112381086A
公开(公告)日:2021-02-19
申请号:CN202011229081.4
申请日:2020-11-06
Applicant: 厦门市美亚柏科信息股份有限公司
Abstract: 本发明涉及一种结构化输出图像文字识别结果的方法及装置,该方法包括以下步骤:S1.利用光学字符识别算法(OCR)获取检测框位置信息;S2.构建带标注的关键字段数据集,其中,关键字段为待获取的信息类别;S3.设定锚定字段;S4.特征向量构建,将相对位置信息和相对宽高比用于特征向量生成;S5.训练优化分类器,用生成的特征向量对机器学习分类器进行训练和优化;S6.检测框分类,使用训练优化后的机器学习分类器对待识别图像的文字区域的检测框进行分类;S7.识别并输出结构化结果,具体地,识别检测框内的文字,并对识别后的文字进行关键信息匹配,将版式相近的文字字段校正输出,最终输出结构化结果数据。
-
公开(公告)号:CN114445436B
公开(公告)日:2025-04-11
申请号:CN202111628161.1
申请日:2021-12-28
Applicant: 厦门市美亚柏科信息股份有限公司
IPC: G06T7/13 , G06T5/20 , G06T5/70 , G06N3/0464
Abstract: 本发明公开了一种目标检测的方法、装置以及存储介质。所述方法包括:获取待检测图像;对待检测图像进行边缘检测处理,得到第一图像;通过预设的特征提取网络对待检测图像进行处理,得到待检测图像的第二图像,使用第一图像对第二图像进行处理,增强第二图像的边缘特征;预设的特征提取网络包含特征降噪模块,使用特征降噪模块对增强边缘特征的第二图像进行降噪处理;使用预设的特征提取网络对降噪处理后的第二图像进行处理,得到图像特征,将图像特征输入预设的目标检测网络,得到目标类别和目标框。本发明提供的一种目标检测的方法和装置,能够提升基于深度学习神经网络的特征提取网络的特征提取能力,以及目标检测网络的目标检测能力。
-
公开(公告)号:CN117195222A
公开(公告)日:2023-12-08
申请号:CN202310959070.9
申请日:2023-08-01
Applicant: 厦门市美亚柏科信息股份有限公司
IPC: G06F21/57 , G06F21/71 , G06N3/094 , G06N3/0455 , G06V10/82
Abstract: 公开了基于对抗网络的深度神经网络对抗攻击防御的方法和系统,包括搭建深度神经网络随机对抗攻击模块,深度神经网络随机对抗攻击模块包括多个并联的对抗攻击算法,随机对输入图像进行对抗攻击加噪;搭建可微分频域正则化器,可微分频域正则化器对频域信息对模型输出进行正则化处理;搭建对抗防御网络架构,对抗防御网络以基于编码解码结构的生成对抗网络作为主干网络,并引入深度神经网络随机对抗攻击模块和可微分频域正则化器;收集自然场景下的图像,按比例形成训练集和验证集,使用训练集对对抗防御网络进行训练至损失收敛。本申请能够明显提升深度神经网络对抗攻击防御能力,对多种对抗攻击方式均有良好的泛化性能。
-
公开(公告)号:CN117011809A
公开(公告)日:2023-11-07
申请号:CN202310764791.4
申请日:2023-06-27
Applicant: 厦门市美亚柏科信息股份有限公司
IPC: G06V20/54 , G06V10/26 , G06V10/44 , G06V10/774 , G06V10/74
Abstract: 公开了一种多任务引导式的车辆检索方法和系统,包括利用ResNet50作为多任务引导式车辆检索方法的主干网络,主干网络包括4个用于提取车辆特征的残差卷积块Stage1、Stage2、Stage3、Stage4;定义车辆检索任务的损失函数为三元组损失函数Ltriplet和标签平滑正则化的交叉熵损失函数#imgabs0#将Stage4提取的特征输出至解压模块,利用反卷积分割车辆的整体轮廓信息,整体任务的损失函数#imgabs1##imgabs2#其中,β为超参数,LMASK表示车辆分割任务的损失函数。本申请引入车辆分割任务,大幅度提升了车辆检索任务的性能。
-
-
-
-
-
-
-
-
-