-
公开(公告)号:CN110808409A
公开(公告)日:2020-02-18
申请号:CN201910875429.8
申请日:2019-09-17
Applicant: 厦门大学
IPC: H01M10/0565 , H01M10/058 , H01M10/052 , C08F283/06 , C08F222/20 , C08F218/00 , C08F220/14 , C08F212/14 , C08F220/58
Abstract: 本发明公开了一种聚合物锂二次电池及其原位制成方法,通过高能量的电离辐照引发前驱液交联或聚合制备得到聚合物锂二次电池。本发明取代现有热固化法,可以延续使用制备普通液态电解质电池时使用的板和隔膜,对传统工艺用设备和材料的改动少,具有方便高效,可选择的单体、预聚物类型更多,不引入杂质,常温即可进行等优点,具有良好的产业化应用前景。
-
公开(公告)号:CN105070868B
公开(公告)日:2017-12-08
申请号:CN201510531276.7
申请日:2015-08-26
Applicant: 厦门大学
IPC: H01M2/16 , H01M10/0525
Abstract: 本发明公开了一种多巴胺改性陶瓷复合隔膜及其应用,该多巴胺改性陶瓷复合隔膜包括有机隔膜基材和涂覆于隔膜基材表面的厚度为0.1μm‑20μm的陶瓷层,还包括在隔膜基材和陶瓷层的表面及内部原位生长的多巴胺类聚合物,该多巴胺类聚合物为聚多巴胺、5‑羟基‑聚多巴胺或聚多巴胺丙烯酰胺与聚多巴胺丙烯酰胺的共聚物,陶瓷层中的无机粉体的粒径为5nm~10μm,有机隔膜基材的材料的分子量为1000‑100000000。本发明的多巴胺改性陶瓷复合隔膜由于该多巴胺类聚合物的存在,可以有效降低陶瓷层掉粉以及漏液所造成的安全隐患,有效提高隔膜的物理性能和电化学性能,同时由于该多巴胺类聚合物的存在,还能够提高隔膜电解液和电极之间的界面稳定性,界面稳定性的提高能够有效地抑制锂支晶的产生,因此有利于提高电池的容量保持能力。
-
公开(公告)号:CN105140453B
公开(公告)日:2017-09-08
申请号:CN201510531247.0
申请日:2015-08-26
Applicant: 厦门大学
IPC: H01M2/16 , H01M10/0525
Abstract: 本发明公开了一种具有热关断功能的陶瓷复合隔膜及其应用,该陶瓷复合隔膜包括一隔膜基材和涂覆于隔膜基材表面的厚度为0.5~20μm保护层,该保护层的有效成分包括以无机物为核心,以聚烯烃或石蜡聚合物为壳层的核壳结构颗粒,上述核心的粒径为5nm~10μm,壳层的厚度为1nm~10μm,上述聚烯烃的分子量为5000~5000000。本发明的具有热关断功能的陶瓷复合隔膜的保护层能够极大增加颗粒的表面积,而显著提高隔膜的浸润性,同时核壳结构颗粒还可以在预先设定的温度下融化形成致密一层,达到阻断锂离子导通的作用。
-
公开(公告)号:CN106784558A
公开(公告)日:2017-05-31
申请号:CN201710147195.6
申请日:2017-03-13
Applicant: 厦门大学
IPC: H01M2/16 , H01M10/0525
CPC classification number: H01M2/1646 , H01M2/1653 , H01M2/1686 , H01M10/0525
Abstract: 以气凝胶为粉体的陶瓷隔膜及其在锂离子电池中的应用,涉及锂离子电池隔膜。所述以气凝胶为粉体的陶瓷隔膜以气凝胶作为陶瓷粉体,所述陶瓷粉体涂布在隔膜上形成陶瓷隔膜。所述以气凝胶为粉体的陶瓷隔膜可在电池中应用。所述电池包括非水电解液二次电池等;所述电池包括正极材料、负极材料和以气凝胶为粉体的陶瓷隔膜,所述以气凝胶为粉体的陶瓷隔膜设在正极材料和负极材料之间。气凝胶是一种由原子团簇交联而形成的轻质纳米介孔非晶材料,其孔隙率高达80%以上,比表面积高达800~1000m2/g,并具有优异的透光性、极低的热导率、耐高温和低密度等特性。可作为锂离子等二次电池的高安全隔膜材料,具有优异的热稳定性和电化学性能。
-
公开(公告)号:CN104064712B
公开(公告)日:2016-01-13
申请号:CN201410327092.4
申请日:2014-07-10
Applicant: 厦门大学 , 中航锂电(洛阳)有限公司
IPC: H01M2/16
Abstract: 一种锂离子电池陶瓷隔膜粘结剂的选择方法,涉及锂离子电池。将无机粉体与溶剂、粘结剂混匀,得到混合粉体;将混合粉体涂覆在普通市售隔膜的单层或者双层表面,烘干,除去溶剂,得到陶瓷隔膜,陶瓷隔膜的陶瓷层厚度可通过无机粉体与溶剂、粘结剂的比例来调节;将陶瓷隔膜固定在电烙铁下方1~5mm处,控制电烙铁的温度为100~480℃,对陶瓷隔膜持续加热1s~15min后观察陶瓷隔膜的是否会形成穿孔,所形成的穿孔会不会随着时间进一步扩大;锂离子电池在不同的温度下会发生相应的反应,根据陶瓷隔膜是否形成穿孔,穿孔是否会进一步扩大来筛选陶瓷隔膜的最大工作温度,并以此确定相应陶瓷隔膜所用的粘结剂。
-
公开(公告)号:CN103500821A
公开(公告)日:2014-01-08
申请号:CN201310491334.9
申请日:2013-10-18
Applicant: 厦门大学
IPC: H01M4/48 , H01M10/0525
CPC classification number: H01M4/5825 , H01M10/0525
Abstract: 一种锂离子电池用低电位锂钒基化合物及其制备方法,涉及锂离子电池。所述锂离子电池用低电位锂钒基化合物具有复合结构,主体为钒基层状氧化物,其余部分为钒基化合物。所述复合结构为核壳结构或嵌入交联结构。所述核壳结构的内层为钒基层状氧化物,核壳结构的外层为钒基化合物;所述嵌入交联结构是指在主体钒基层状氧化物中,均匀分布有非主体钒基化合物成分。本体材料制备;本体材料的表面处理;将得到的经表面处理的本体材料与处理试剂混合,煅烧,获得锂离子电池用低电位锂钒基化合物。所制备的锂离子电池用低电位锂钒基化合物的振实密度为1.8~3.0g/cm3,大于石墨负极。低成本、安全、无污染。
-
公开(公告)号:CN118773820A
公开(公告)日:2024-10-15
申请号:CN202310362804.5
申请日:2023-04-07
Applicant: 厦门大学
IPC: D04H1/4382 , D04H1/728 , D06C7/04 , H01M10/42 , H01M10/056 , H01M10/058 , H01M10/0525 , D01F8/16 , D01F1/07
Abstract: 本发明提供了核壳结构的聚酰亚胺(PI)阻燃基膜及其制备方法和其在原位固态电池中的应用。制备方法主要是将聚酰胺酸(PAA)溶解于有机溶剂中,作为壳层纺丝液;将聚酰胺酸溶解于有机溶剂中并加入耐高温的阻燃剂和硅烷偶联剂,作为核层纺丝液,阻燃剂优选耐高温的三聚氰胺聚磷酸盐(MPP)和氢氧化镁(Mg(OH)2)。通过同轴静电纺丝,得到淡黄色的无纺布膜,然后在250℃~340℃空气氛围煅烧,得到核壳结构聚酰亚胺阻燃基膜,为PI无纺布复合膜。制备的PI复合膜具有阻燃功能,阻燃剂在核层,不影响电池的电化学性能。进一步的,由于PI具有抗辐射性能,该阻燃基膜可在γ射线原位固态化的锂离子电池等化学电源体系中应用。
-
-
公开(公告)号:CN115085389A
公开(公告)日:2022-09-20
申请号:CN202210866188.2
申请日:2022-07-22
Applicant: 厦门大学
Abstract: 本发明涉及一种基于风/光‑碳耦合的储能系统。该系统包括:风电场与风电转换器相连接,光伏电站与光伏转换器相连接;风电转换器以及光伏转换器均与碳化学反应装置相连接;风电场以及光伏电站产生的不稳定电能分别经过风电转换器以及光伏转换器,输送至碳化学反应装置中,将不稳定电能与碳化学反应装置中的碳物质进行耦合,发生强吸热化学反应;碳化学反应装置用于将不稳定电能作为强吸热化学反应所需热量以及物料升温所需物理焓的驱动,将不稳定电能封装至CO气体的化学能中,存储CO气体;当用电高峰时,将CO气体作为燃料,提供电能。本发明能够将风、光电以高效率转化为其他能量形式并储存在载体中以供需要时高效重新释放。
-
公开(公告)号:CN115021322A
公开(公告)日:2022-09-06
申请号:CN202210834992.2
申请日:2022-07-15
Applicant: 厦门大学
Abstract: 本发明公开了一种基于碳化学储能的核电站调峰系统,涉及碳化学储能技术领域,包括:依次连接的控制调度中心、核电站、核碳耦合装置、碳化学储能系统和水煤气发电设备,控制调度中心、核电站和水煤气发电设备均与电网连接。在电网用电低谷时,核电站在对电网进行供电的同时,将过剩电能和蒸汽通过核碳耦合装置和碳化学储能系统,实现电能到化学能的转化和存储;在电网用到高峰时,将存储的化学能通过水煤气发电系统转换为电力返回电网。和基于压缩空气储能的核电厂调峰系统相比,本发明无需找寻地下洞穴,降低了地理条件的依赖,设置方式更加灵活。
-
-
-
-
-
-
-
-
-