-
公开(公告)号:CN109859295B
公开(公告)日:2021-01-12
申请号:CN201910102804.5
申请日:2019-02-01
Applicant: 厦门大学
Abstract: 本发明涉及一种特定动漫人脸生成方法、终端设备及存储介质,在该方法中结合现有的基于卷积神经网络的神经风格迁移技术,实现真实人脸到动漫人脸的颜色像素风格迁移,初步动漫风格化;结合现有的基于生成对抗网络的风格迁移技术,实现初步动漫风格化的真实人脸到特定动漫人脸的域风格迁移,得到特定动漫人物的动漫化真人人脸图像。本发明既能够提取颜色特征、又能够保持面部结构特征,减少面部变形;并且可以针对特定动漫人物,生成需要的图像。
-
公开(公告)号:CN112597391B
公开(公告)日:2022-08-12
申请号:CN202011564657.2
申请日:2020-12-25
Applicant: 厦门大学
IPC: G06F16/9535 , G06Q30/06 , G06N20/00
Abstract: 本发明公开了一种基于动态递归机制的分层强化学习的推荐系统,包括用户画像矫正器:采用一种动态递归机制的策略梯度方法,及引入参数动态稀疏权重以删除噪声数据来修改用户画像,其中,所述动态递归机制的策略梯度方法包括:动态基线和基于时序上下文的递归强化学习,所述动态基线为采用动态稀疏权重对总收益进行学习策略的改进;注意力机制:用于自动调整用户偏好的变化;推荐模型:用于通过注意力机制向用户推荐最相关物品。本发明的推荐系统,通过在策略梯度方法中引入一个参数动态稀疏权重,使智能体在全局最优策略下选择最优行为;其次,结合时间上下文的分层强化学习,该方法能够更可靠地收敛,从而提高模型预测的稳定性。
-
公开(公告)号:CN106131862B
公开(公告)日:2019-08-16
申请号:CN201610511177.7
申请日:2016-07-01
Applicant: 厦门大学 , 常州梯卫士网络科技有限公司
CPC classification number: Y02D70/00
Abstract: 本发明提出一种无线传感器网络中基于多目标进化算法的优化覆盖方法,首先创建无线传感器网络的数学模型及目标函数,随机生成一种群,采用基于非支配排序和维度双向搜索的多目标进化算法主要流程如下:维持一个大小为N的种群,并通过不断迭代,引导算法逼近Pareto最优前沿。在每一次迭代过程中,首先给定一个种群Pt;引入基于改进差分运算的双向定向局部搜索策略用于产生一个更好的种群Pt′;然后,采用快速非支配排序算法对合并种群Pt∪Pt′进行排序并生成偏序边界,引入新分布度维持策略与快速非支配排序算法结合,以选择一个新的种群进入下一次进化,最终获得使得无线传感器网络所有节点的总工作功率小,同时又能保证覆盖率的最大化的种群方案。
-
-