一种基于粒子群遗传算法的多无人机区域覆盖部署方法

    公开(公告)号:CN110233657B

    公开(公告)日:2021-07-09

    申请号:CN201910255514.4

    申请日:2019-04-01

    Abstract: 本发明公开了一种基于粒子群遗传算法的多无人机区域覆盖部署方法,根据目标区域的大小和无人机的各项参数,解决无人机的区域覆盖部署问题。本发明以粒子群算法为基本框架,将改进的遗传算法嵌入到粒子群算法的迭代过程中,避免了算法陷入局部极值。本发明使用粒子群遗传算法根据区域覆盖率和网络连通性对覆盖部署方案进行对比研究,经过多次的迭代优化最终得出最佳的覆盖部署方案。

    一种移动多智能体协同目标搜索方法

    公开(公告)号:CN111563188A

    公开(公告)日:2020-08-21

    申请号:CN202010362433.7

    申请日:2020-04-30

    Abstract: 本发明公开了一种移动多智能体协同目标搜索方法,结合AC算法“集中学习,分散执行”的思想对传统DDPG算法进行改进,对Critic的输入进行了拓展,将传统DDPG算法状态行为观测信息多对一的模式改变为一对一;接着对每个智能体采用改进的DDPG算法进行训练,每个智能体在集中学习的过程中Critic输入不仅包含自身的状态行为观测信息,而且也要包括其他智能体的策略以及行为观测信息;最后在所有智能体训练完毕的情况下,每个Actor在不考虑其它智能体的情况下独立执行协同搜索任务,本发明解决了在执行搜索任务时每个智能体状态不断改变引起的环境不稳定、搜索时间长且执行效率低下的问题。

    一种基于自适应动态规划与蒙特卡罗树搜索的搜索方法

    公开(公告)号:CN110083748A

    公开(公告)日:2019-08-02

    申请号:CN201910360537.1

    申请日:2019-04-30

    Abstract: 本发明公开了一种基于自适应动态规划与蒙特卡罗树搜索的搜索方法,包括:输入一个状态、行为和环境的即时反馈值集合,即S、A和R的搜索集;从自适应动态规划训练的神经网络中获得五个候选移动位置及其获胜概率w1;将五个候选移动位置及其当前环境情况视为蒙特卡罗树搜索的根节点,根据蒙特卡罗树搜索方法分别获得5个获胜概率w2;结合五个ADP获胜概率w1及其相应的MCTS获胜概率w2,预测最终获胜概率,进而选择具有最大值的动作位置。本发明结合了浅层神经网络和蒙特卡罗模拟,使用ADP训练神经网络对抗自身,在训练后,神经网络可以获得任何可能情况的获胜概率,从而使游戏的最终预测结果更准确。

    实现多智能小车协同搜索识别并跟踪特定目标群体的方法

    公开(公告)号:CN108986148A

    公开(公告)日:2018-12-11

    申请号:CN201810236334.7

    申请日:2018-03-21

    Abstract: 本发明公开了一种实现多智能小车协同搜索识别并跟踪特定目标群体的方法,该方法首先初始化一个目标操作域O并将其分成A个小块,采用A辆智能小车在这A个区域进行搜索;接着通过计算事先输入目标群体中其中一个目标的归一化转动向量(NMI)值,智能小车在搜索过程中不断进行图像的采集以及预处理。将采集到的图像的NMI值与事先输入的进行匹配,若相等,则说明测量结果为真,否则视为未发现目标。然后将该测量值作为单个智能小车i的输入并根据贝叶斯规则分别更新地图。引入概率图的非线性变换以通过线性化贝叶斯更新来简化计算,最后提出了一种类似共识的分布式融合方案,用于多小车的地图融合,得到一个新的分散概率图。

Patent Agency Ranking