-
公开(公告)号:CN107944622A
公开(公告)日:2018-04-20
申请号:CN201711167328.2
申请日:2017-11-21
Applicant: 华北电力大学
CPC classification number: G06Q10/04 , G06K9/6223 , G06N3/02 , G06Q50/06
Abstract: 本发明涉及机器学习和风力发电领域,特别涉及基于连续时段聚类的风电功率预测方法。包括,在基于相似日预测方法的基础上,分别采用Elman神经网络和支持向量机作为预测模型,进行迭代预测,确定相似时段长度:结合功率向量和气象信息,根据相似时段长度,通过两阶段搜索策略,确定相似度衡量标准,在历史数据中寻找最佳相似时段集合;基于Elman神经网络,创建风电功率预测模型,将所得到的最佳相似时段集合作为训练数据,通过风电功率预测模型进行迭代计算,完成未来时段的风电功率预测。本发明在相似日预测方法的基础上引入气象因素,采用基于聚类-分类的相似时段选取策略,可以快速地寻找最佳相似时段集合,提高预测精度和准确率。
-
公开(公告)号:CN103679288B
公开(公告)日:2017-04-12
申请号:CN201310648773.6
申请日:2013-12-04
Applicant: 华北电力大学
IPC: G06Q10/04
Abstract: 一种径流式小水电集群发电功率短期预测方法及预测系统,属于水力发电功率预测技术领域。该方法将接入同一变电站的若干个小水电视为一个集群,分别对集群内所有单个小水电功率数据和集群整体功率数据进行预测,然后将两方面预测结果相融合获得最终的集群发电预测数值。本发明还提供一种径流式小水电集群发电功率短期预测系统。本发明将分散的多个径流式小水电归为一个集群,充分考虑径流式小水电的累积效应和滞后效应,计算未来时刻功率预测数值时将单点功率变化率与平均功率变化率相结合,集群功率预测结果融合了整体功率预测结果和所有单个小水电功率预测结果,针对径流式小水电功率输出规律性差而无法准确预测技术问题,本发明预测准确性较好。
-