基于特征融合Transformer的多对比度核磁共振图像超分辨率方法

    公开(公告)号:CN117495680B

    公开(公告)日:2024-05-24

    申请号:CN202410001400.8

    申请日:2024-01-02

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于特征融合Transformer的多对比度核磁共振图像超分辨率方法,涉及图像处理技术领域,包括:构建浅层特征提取模块;构建双域特征提取模块和双融合特征提取模块并进行组合,生成残差全局特征融合模块,基于残差全局特征融合模块构建深层特征提取模块;构建图像重建模块;将浅层特征提取模块、深层特征提取模块和图像重建模块组合,构建基于特征融合Transformer的多对比度核磁共振图像超分辨率网络,并以待重建的低分辨率图像和核磁共振图像作为网络的输入,得到重建后高分辨率图像。本发明利用特征融合Transformer来提取多对比度MRI图像中所包含的全局与局部特征,使得重建的图像更加清晰。

    基于扩散生成先验的人脸图像复原方法、装置及可读介质

    公开(公告)号:CN117495714A

    公开(公告)日:2024-02-02

    申请号:CN202410004081.6

    申请日:2024-01-03

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于扩散生成先验的人脸图像复原方法、装置及可读介质,涉及图像处理模块,包括:构建基于预训练的扩散模型的人脸图像复原模型,将待复原的人脸图像输入前向加噪模块中逐步增加噪声,得到噪声图像;将噪声图像输入反向去噪模块中逐步去噪,生成最终复原的人脸图像;将第t步的噪声图像及第t步的时间戳输入噪声预测器,预测得到第t步的噪声;在前向加噪模块中,将第t步的噪声图像和第t步的噪声输入结合融合反演的前向扩散公式,得到第t+1步的噪声图像;在反向去噪模块中,对第t步的噪声图像进行零阈值分解,并与第t步的噪声输入反向扩散公式,得到第t‑1步的噪声图像,解决了现有技术生成的复原图像在真实性和一致性差问题。

    基于特征融合Transformer的多对比度核磁共振图像超分辨率方法

    公开(公告)号:CN117495680A

    公开(公告)日:2024-02-02

    申请号:CN202410001400.8

    申请日:2024-01-02

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于特征融合Transformer的多对比度核磁共振图像超分辨率方法,涉及图像处理技术领域,包括:构建浅层特征提取模块;构建双域特征提取模块和双融合特征提取模块并进行组合,生成残差全局特征融合模块,基于残差全局特征融合模块构建深层特征提取模块;构建图像重建模块;将浅层特征提取模块、深层特征提取模块和图像重建模块组合,构建基于特征融合Transformer的多对比度核磁共振图像超分辨率网络,并以待重建的低分辨率图像和核磁共振图像作为网络的输入,得到重建后高分辨率图像。本发明利用特征融合Transformer来提取多对比度MRI图像中所包含的全局与局部特征,使得重建的图像更加清晰。

Patent Agency Ranking