-
公开(公告)号:CN110163420B
公开(公告)日:2021-07-27
申请号:CN201910352165.8
申请日:2019-04-28
Applicant: 华中科技大学 , 长江水利委员会长江科学院
Abstract: 本发明公开了一种基于分解文化进化算法的多目标生态调度方法和系统,属于水电能源优化领域,包括:以水位为自变量,以发电量最大、生态流量改变度最小和最小出力最大化为目标建立多目标函数模型;为多目标函数模型生成多组权重向量,初始化邻域索引集和归档集,随机生成包含多个个体的初始种群,对于每个个体,从其邻域索引集中随机选取父代个体进行交叉变异得到子代个体,将父代个体和子代个体进行比较并保留较优个体;当初始种群中每个个体都完成上述操作后则初始种群进化完成,当进化次数满足预设次数,得到最终的归档集,最终的归档集是最优水库调度方案。本发明对多个目标进行评估,适用性强,可得到经济可靠的水电站优化调度方案。
-
公开(公告)号:CN110059867B
公开(公告)日:2021-01-19
申请号:CN201910238384.3
申请日:2019-03-27
Applicant: 华中科技大学 , 中国水利水电科学研究院
Abstract: 本发明公开一种共享权重长短期记忆网络(SWLSTM)结合高斯过程回归(GPR)的风速预测方法,该方法主要包括:采用共享权重来简化标准长短期记忆网络(LSTM)的结构;利用结合了mini‑batch机制的Adam优化算法来训练SWLSTM,得到具有高准确率的风速点预测结果;将SWLSTM得到的点预测结果作为GPR的输入,二次预测得到风速概率预测结果;选定置信度,通过高斯分布得到相应置信度下的风速区间预测结果。本发明的预测方法通过共享权重缩减了LSTM的训练时间,结合GPR使得SWLSTM有能力进行概率预测和区间预测。SWLSTM‑GPR可得到高精度的风速点预测结果,合适的风速区间预测结果和可靠的风速概率预测分布,对风电的规划和应用具有重要意义。
-
公开(公告)号:CN110163420A
公开(公告)日:2019-08-23
申请号:CN201910352165.8
申请日:2019-04-28
Applicant: 华中科技大学 , 长江水利委员会长江科学院
Abstract: 本发明公开了一种基于分解文化进化算法的多目标生态调度方法和系统,属于水电能源优化领域,包括:以水位为自变量,以发电量最大、生态流量改变度最小和最小出力最大化为目标建立多目标函数模型;为多目标函数模型生成多组权重向量,初始化邻域索引集和归档集,随机生成包含多个个体的初始种群,对于每个个体,从其邻域索引集中随机选取父代个体进行交叉变异得到子代个体,将父代个体和子代个体进行比较并保留较优个体;当初始种群中每个个体都完成上述操作后则初始种群进化完成,当进化次数满足预设次数,得到最终的归档集,最终的归档集是最优水库调度方案。本发明对多个目标进行评估,适用性强,可得到经济可靠的水电站优化调度方案。
-
公开(公告)号:CN110059867A
公开(公告)日:2019-07-26
申请号:CN201910238384.3
申请日:2019-03-27
Applicant: 华中科技大学 , 中国水利水电科学研究院
Abstract: 本发明公开一种共享权重长短期记忆网络(SWLSTM)结合高斯过程回归(GPR)的风速预测方法,该方法主要包括:采用共享权重来简化标准长短期记忆网络(LSTM)的结构;利用结合了mini-batch机制的Adam优化算法来训练SWLSTM,得到具有高准确率的风速点预测结果;将SWLSTM得到的点预测结果作为GPR的输入,二次预测得到风速概率预测结果;选定置信度,通过高斯分布得到相应置信度下的风速区间预测结果。本发明的预测方法通过共享权重缩减了LSTM的训练时间,结合GPR使得SWLSTM有能力进行概率预测和区间预测。SWLSTM-GPR可得到高精度的风速点预测结果,合适的风速区间预测结果和可靠的风速概率预测分布,对风电的规划和应用具有重要意义。
-
公开(公告)号:CN109902801A
公开(公告)日:2019-06-18
申请号:CN201910058334.7
申请日:2019-01-22
Applicant: 华中科技大学 , 长江水利委员会长江科学院
Abstract: 本发明公开了一种基于变分推理贝叶斯神经网络的洪水集合预报方法,包括:设置贝叶斯神经网络各层维度;选定贝叶斯神经网络的权重参数的先验概率分布,通过变分参数对贝叶斯神经网络的权重参数进行参数化,来近似贝叶斯神经网络的权重参数的后验概率分布;计算先验概率分布与变分后验概率分布的相对熵,并根据训练数据集计算期望对数似然函数;根据相对熵和期望对数似然函数,构建目标函数;最大化目标函数,训练变分推理参数;使用训练好的变分推理贝叶斯神经网络,对未知洪水进行集合预报。本发明将变分推理与BNN模型结合,通过变分分布近似贝叶斯网络模型权重参数的后验概率,简化了计算过程,定量描述洪水预报的不确定性,提高准确度。
-
-
-
-