一种基于程序追踪和混合执行的模糊测试系统

    公开(公告)号:CN109739755A

    公开(公告)日:2019-05-10

    申请号:CN201811612236.5

    申请日:2018-12-27

    Abstract: 本发明提供一种基于程序追踪和混合执行的模糊测试系统,该系统主要包括三个模块,分别是模糊测试模块、数据流追踪模块和混合执行模块;模糊测试模块的输入为目标二进制程序、种子测试用例和由数据流追踪模块提取的种子测试用例中字节序列对应变量的类型信息,输出为触发新路径的测试用例;数据流追踪模块的输入为目标二进制程序和模糊测试模块加载的种子测试用例,输出为种子测试用例中字节序列对应变量的类型信息和目标二进制程序中数据的依赖关系;混合执行模块的输入为数据流追踪模块实时提供的目标二进制程序中数据的依赖关系,输出为由该模块新生成的可能触发新路径的候选测试用例。该系统相比于现有技术,能够提升测试用例生成的有效性。

    一种模糊测试变异数量确定方法和装置

    公开(公告)号:CN109117367A

    公开(公告)日:2019-01-01

    申请号:CN201810820854.2

    申请日:2018-07-24

    Abstract: 本发明公开了一种模糊测试变异数量确定方法,适用于AFL破坏性变异过程中的变异数量确定,该方法针对每个测试用例i,计算该测试用例所执行路径P的路径频次freq(P)以及有效字节比例eff(i);根据路径频次freq(P)和有效字节比例eff(i)调整分配给测试用例i的能量,根据所述能量确定变异数量;其中,路径频次freq(P)越大,则分配给测试用例i的能量越小;有效字节比例eff(i)越大,则分配给测试用例i的能量越大。本发明通过对AFL能量分配的改进,进而对模糊测试变异数量的确定进行改进,以便能够提高模糊测试的效率。

    一种基于AFL的模糊测试变异方法和装置

    公开(公告)号:CN109101422A

    公开(公告)日:2018-12-28

    申请号:CN201810820845.3

    申请日:2018-07-24

    Abstract: 本发明公开了一种基于AFL的模糊测试变异方法和装置,在AFL的确定性变异阶段确定测试用例的有效字节;在确定性变异阶段,根据所述有效字节的信息确定变异字节,不变异全无效字节;在破坏性变异阶段,根据所述有效字节的信息指导变异,如果当前随机选择的字节是有效字节,则一定变异;否则给予小概率变异。使用本发明能够提高AFL的效率,而且能够解决现有符号执行和污点分析技术带来的资源消耗增加的问题。

    一种基于最小集合覆盖的模糊测试方法和装置

    公开(公告)号:CN111897733B

    公开(公告)日:2023-04-07

    申请号:CN202010790762.1

    申请日:2020-08-07

    Abstract: 本发明公开了一种基于最小集合覆盖的模糊测试方法和装置,该方法利用深度神经网络为目标二进制程序产生测试用例集,并加入测试用例队列;利用最小集合覆盖理论,从所述测试用例队列中筛选出具有最大化路径覆盖率且测试用例数量最少的最小用例集合,以减少执行效果相同的重复测试用例的数量;以设定的一个或一个以上的测试用例选择标准,对所述最小用例集合中的测试用例进行排序,选择最优测试用例进行后续变异,继而实现模糊测试;将模糊测试过程中产生的有效测试用例加入深度神经网络测试用例训练集,离线地指导深度神经网络进行优化训练。使用本发明能够获得更小测试用例集以及更有效的测试用例,可以针对目标二进制程序进行有效地漏洞检测。

    一种基于AFL的模糊测试变异方法和装置

    公开(公告)号:CN109101422B

    公开(公告)日:2022-02-22

    申请号:CN201810820845.3

    申请日:2018-07-24

    Abstract: 本发明公开了一种基于AFL的模糊测试变异方法和装置,在AFL的确定性变异阶段确定测试用例的有效字节;在确定性变异阶段,根据所述有效字节的信息确定变异字节,不变异全无效字节;在破坏性变异阶段,根据所述有效字节的信息指导变异,如果当前随机选择的字节是有效字节,则一定变异;否则给予小概率变异。使用本发明能够提高AFL的效率,而且能够解决现有符号执行和污点分析技术带来的资源消耗增加的问题。

    一种基于程序追踪和混合执行的模糊测试系统

    公开(公告)号:CN109739755B

    公开(公告)日:2020-07-10

    申请号:CN201811612236.5

    申请日:2018-12-27

    Abstract: 本发明提供一种基于程序追踪和混合执行的模糊测试系统,该系统主要包括三个模块,分别是模糊测试模块、数据流追踪模块和混合执行模块;模糊测试模块的输入为目标二进制程序、种子测试用例和由数据流追踪模块提取的种子测试用例中字节序列对应变量的类型信息,输出为触发新路径的测试用例;数据流追踪模块的输入为目标二进制程序和模糊测试模块加载的种子测试用例,输出为种子测试用例中字节序列对应变量的类型信息和目标二进制程序中数据的依赖关系;混合执行模块的输入为数据流追踪模块实时提供的目标二进制程序中数据的依赖关系,输出为由该模块新生成的可能触发新路径的候选测试用例。该系统相比于现有技术,能够提升测试用例生成的有效性。

Patent Agency Ranking