-
公开(公告)号:CN108470190B
公开(公告)日:2019-01-29
申请号:CN201810193174.2
申请日:2018-03-09
Applicant: 北京大学
Abstract: 本发明公布了一种基于FPGA定制脉冲神经网络的图像识别方法,通过在FPGA平台定制化卷积脉冲神经网络来进行图像识别;卷积脉冲神经网络包括卷积层、降采样层、全连接层和分类层;图像识别方法包括:产生脉冲序列、卷积运算、降采样、全连接和分类识别过程;具体实现采用的开发平台为Xilinx FPGA开发板Virtex‑7,采用的开发软件为Vivado,编程语言为Verilog。本发明可以识别数值神经网络无法识别的脉冲序列信息,在高速场景下具有识别速度更快、准确率更高、功耗更低的优势。
-
公开(公告)号:CN108470190A
公开(公告)日:2018-08-31
申请号:CN201810193174.2
申请日:2018-03-09
Applicant: 北京大学
CPC classification number: G06K9/6296 , G06N3/0454 , G06N3/049
Abstract: 本发明公布了一种基于FPGA定制脉冲神经网络的图像识别方法,通过在FPGA平台定制化卷积脉冲神经网络来进行图像识别;卷积脉冲神经网络包括卷积层、降采样层、全连接层和分类层;图像识别方法包括:产生脉冲序列、卷积运算、降采样、全连接和分类识别过程;具体实现采用的开发平台为Xilinx FPGA开发板Virtex-7,采用的开发软件为Vivado,编程语言为Verilog。本发明可以识别数值神经网络无法识别的脉冲序列信息,在高速场景下具有识别速度更快、准确率更高、功耗更低的优势。
-