-
公开(公告)号:CN110992366B
公开(公告)日:2023-06-06
申请号:CN201911197414.7
申请日:2019-11-29
Applicant: 北京卫星信息工程研究所
Abstract: 本发明实施例公开了一种图像语义分割方法、装置及存储介质;其中,所述方法包括:获取至少一幅图像;对所述至少一幅图像进行超像素分割,得到对应的超像素分割图;根据所述超像素分割图构建重组层,利用所述重组层生成目标分割模型;基于所述目标分割模型对所述图像及所述超像素分割图像进行处理,得到语义分割结果。
-
公开(公告)号:CN115019181B
公开(公告)日:2023-02-07
申请号:CN202210900309.0
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/04 , G06N3/08 , G06V10/52 , G06V10/764 , G06V10/766 , G06V10/77 , G06V10/82
Abstract: 本发明涉及一种遥感图像旋转目标检测方法、电子设备及存储介质,在训练中,对给定的目标位置标签,先利用椭圆分布采样方式,获取丰富的样本点;利用自适应前景采样策略,从高层特征图到低层特征图依次获取高质量的前景样本点,与网络预测的前景目标一起输入到损失函数,从而学到更准确的目标特征表示方法,基于标签中目标真值坐标,通过调整椭圆长边与短边的长度,自适应地在特征图上进行采样,避免了小尺寸目标在特征金字塔中难以获取采样点和大尺寸获取过多冗余采样点的问题,通过自适应的方法提升了采样精度和泛化性,对高分辨率遥感图像旋转框目标检测具有重要意义。
-
公开(公告)号:CN115019180B
公开(公告)日:2023-01-17
申请号:CN202210900308.6
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/04 , G06N3/08 , G06V10/764 , G06V10/766 , G06V10/77 , G06V10/82 , G06V10/80
Abstract: 本发明涉及一种SAR图像舰船目标检测方法、电子设备及存储介质,四种单极化图像目标检测网络指导学生目标检测网络学习“极化特征知识”,全极化的目标检测网络指导学生目标检测网络学习输出端“响应知识”,有效地减少了不同极化样本分布不均衡情况导致的目标检测模型训练时存在网络过拟合问题,使得学生目标检测网络对于不同极化方式的SAR数据都有较好的检测能力,保证了学生目标检测网络的稳定性与可靠性,在降低目标检测网络复杂度的同时,得到适用于不同极化SAR图像的舰船目标检测器。
-
公开(公告)号:CN115272856A
公开(公告)日:2022-11-01
申请号:CN202210900854.X
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/04 , G06N3/08 , G06V10/52 , G06V10/764 , G06V10/766 , G06V10/77 , G06V10/82
Abstract: 本发明涉及一种舰船目标细粒度识别方法及设备,结合细粒度分类结果和旋转框参数,实现对舰船目标的细粒度识别,避免了成像条件、拍摄角度和舰船目标中心点或角点位置随机导致模型难以聚焦关键点处的细粒度特征的问题,提高了模型定位关键点的准确度,通过构建关键点注意力,引导模型聚焦关键点区域的细粒度特征及其内在自相关性,提高了舰船目标的细粒度识别准确率,为舰船目标细粒度识别提供了一种切实可行的技术途径,在遥感目标识别领域有较大的实际应用价值。
-
公开(公告)号:CN115100449A
公开(公告)日:2022-09-23
申请号:CN202210921778.0
申请日:2022-08-02
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种遥感数据多目标关联匹配与轨迹生成方法及设备,利用SIFT尺度不变的特性对多模态序列遥感图像进行空间配准,再利用基于拓扑特征相似度匹配的多目标关联匹配方法对图像中的目标信息进行关联匹配,该发明可以将不同传感器在空间及时间上的冗余或互补信息进行组合,获得比单一传感器单时相数据更完善更准确的目标轨迹信息,具有高效率、高精度的特点。
-
公开(公告)号:CN115097456A
公开(公告)日:2022-09-23
申请号:CN202210921935.8
申请日:2022-08-02
Applicant: 北京卫星信息工程研究所
IPC: G01S13/90 , G01S7/292 , G01S7/295 , G01S7/35 , G06V20/13 , G06N3/04 , G06V10/25 , G06V10/26 , G06V10/82
Abstract: 本发明涉及一种合成孔径雷达(SAR)卫星遥感数据在轨检测方法、装置及可读存储介质,所述方法包括:通过主控模块获取SAR原始回波数据;通过SAR成像模块根据所述SAR原始回波数据完成SAR成像处理;通过目标检测模块对所述SAR成像后的图像进行分块处理;通过所述目标检测模块将所述图像分块处理后的图像切片输入目标检测算法;通过所述目标检测模块提取所述图像切片和目标位置。本发明各模块实现最优能效比配置,兼顾性能与成本,实现轻量化高效能计算,适用于SAR卫星数据目标信息的在轨实时智能提取,尤其是适用于不同成像模式下SAR原始回波数据的在轨实时成像和目标检测处理,实现SAR遥感目标高精度实时检测。
-
公开(公告)号:CN115019184A
公开(公告)日:2022-09-06
申请号:CN202210900866.2
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种基于遥感影像的石漠化程度自动分级方法及装置,该方法包括:获取石漠化区域的原始遥感影像和高程数据,并进行预处理;利用处理后的遥感影像反演所述石漠化区域的基岩裸露率和植被覆盖度,利用处理后的高程数据计算坡度数据;将所述基岩裸露率、所述植被覆盖度、所述高程数据和所述原始遥感影像进行融合,得到样本数据,对所述样本数据的石漠化程度进行等级区分和标注,获得标签文件;构建CKRD‑DNN模型,并利用所述样本数据和所述标签文件进行训练;利用训练好的CKRD‑DNN模型对待分级的石漠化区域遥感影像进行识别和判定,得到分级结果。本发明可以实现大范围石漠化区域不同发育程度石漠化的高效自动分级和判定。
-
公开(公告)号:CN115019180A
公开(公告)日:2022-09-06
申请号:CN202210900308.6
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06N3/04 , G06N3/08 , G06V10/764 , G06V10/766 , G06V10/77 , G06V10/82 , G06V10/80
Abstract: 本发明涉及一种SAR图像舰船目标检测方法、电子设备及存储介质,四种单极化图像目标检测网络指导学生目标检测网络学习“极化特征知识”,全极化的目标检测网络指导学生目标检测网络学习输出端“响应知识”,有效地减少了不同极化样本分布不均衡情况导致的目标检测模型训练时存在网络过拟合问题,使得学生目标检测网络对于不同极化方式的SAR数据都有较好的检测能力,保证了学生目标检测网络的稳定性与可靠性,在降低目标检测网络复杂度的同时,得到适用于不同极化SAR图像的舰船目标检测器。
-
公开(公告)号:CN115018892A
公开(公告)日:2022-09-06
申请号:CN202210900865.8
申请日:2022-07-28
Applicant: 北京卫星信息工程研究所
Abstract: 本发明涉及一种遥感影像的自动配准方法及装置,该方法包括:对不完全重叠的待配准遥感影像对进行预处理,得到对应的多个影像块对,并对所述多个影像块对进行仿射变换;构建影像配准深度神经网络模型并进行训练;将仿射变换后的多个影像块对输入训练后的影像配准深度神经网络模型,输出配准后的匹配特征点对;重新投影所述配准后的匹配特征点对至对应的原始待配准遥感影像对中,获得所述待配准遥感影像对的最终匹配结果。本发明可以实现遥感影像精确、高效的自动配准。
-
公开(公告)号:CN108960143B
公开(公告)日:2021-02-23
申请号:CN201810721881.4
申请日:2018-07-04
Applicant: 北京航空航天大学 , 北京卫星信息工程研究所
Abstract: 本发明一种高分辨率可见光遥感图像中的舰船检测深度学习方法,步骤如下:一、读入图像数据并进行预处理;二、对图像整体提取特征;三、在卷积层提取出图像抽象特征后,筛选出目标候选区域;四、在对应全图的特征图上切分出各目标候选区域的特征块,并用感兴趣区域池化层对特征块进行尺寸归一化;五、将特征送入全连接层得到空间变换参数,然后将空间变换参数与特征送入空间变换层,得到形变校正后的特征;六、根据校正后的特征对目标候选区域进行再次分类和位置修正。本发明增强了检测方法对目标旋转等形变的鲁棒性,提升高分辨率可见光遥感图像中的舰船目标检测效果,可应用在高分辨率可见光遥感图像船只目标检测中,具有广阔应用前景和价值。
-
-
-
-
-
-
-
-
-