基于主特征增强的图像中毒防御方法、装置及其应用

    公开(公告)号:CN113902954A

    公开(公告)日:2022-01-07

    申请号:CN202111084309.X

    申请日:2021-09-15

    Abstract: 本发明公开了一种基于主特征增强的图像中毒防御方法、装置及其应用,方法包括:获取图像数据集;选取中毒攻击方法对图像样本进行下毒操作并对深度学习模型进行训练,获得中毒深度学习模型;基于特征神经通路获得主特征增强样本,构成主特征图像数据集;采用原始的图像数据集、主特征图像数据集以及对应的类标对中毒深度学习模型进行训练,获得增加防御机制后的深度学习模型;将中毒样本输入到增加防御机制后的深度学习模型中,统计中毒样本的标签变化率;迭代直至标签变化率大于或等于设定阈值,则获得最终的具有防御机制的深度学习模型。本发明的方法与深度学习采用的模型无关,并且适用于其他多种策略,不影响模型的正常功能的使用。

Patent Agency Ranking