-
公开(公告)号:CN116188469A
公开(公告)日:2023-05-30
申请号:CN202310478390.2
申请日:2023-04-28
Applicant: 之江实验室
IPC: G06T7/00 , G06V10/774 , G06V20/64 , G06V20/70
Abstract: 本说明书公开了一种病灶检测方法、装置、可读存储介质及电子设备,通过设置独立于检测模型的识别模型,在对医学影像序列进行检测时,将每个医学影像逐个输入训练完成的识别模型和检测模型,得到用于表征各医学影像是否包含病灶的识别结果,以及用于表征医学影像中的病灶区域的检测结果,再基于各医学影像分别对应的检测结果和识别结果,确定病灶在人体的三维模型中的三维区域。本方法在检测模型的精准度较低的情况下,也可基于识别模型,对检测模型的检测结果进一步提高,保证了病灶检测的准确率。
-
公开(公告)号:CN112598669B
公开(公告)日:2021-06-01
申请号:CN202110241193.X
申请日:2021-03-04
Applicant: 之江实验室
Abstract: 本发明公开了一种基于数字人技术的肺叶分割方法,该方法通过数字人图像和临床上患者的肺部图像进行非刚性配准,得到变形场和形变后的数字人图像,采用形变后的数字人图像拟合出数字人的形状参数并根据形状参数生成新的数字人图像,再将新的数字人图像与患者肺部图像不断迭代配准和更新,得到更接近于患者肺部图像的数字人图像,最后将数字人图像与患者肺部图像进行非刚性配准并获得变形场,将变形场加到数字人肺叶的边界点云或掩模图像上,得到的结果即为本方法得到的肺叶分割结果。本发明方法首次利用数字人模型进行医学图像中器官分割,本发明方法可以有效提高患者图像存在异常或病变情形下肺叶分割的精度和稳定性。
-
公开(公告)号:CN112598669A
公开(公告)日:2021-04-02
申请号:CN202110241193.X
申请日:2021-03-04
Applicant: 之江实验室
Abstract: 本发明公开了一种基于数字人技术的肺叶分割方法,该方法通过数字人图像和临床上患者的肺部图像进行非刚性配准,得到变形场和形变后的数字人图像,采用形变后的数字人图像拟合出数字人的形状参数并根据形状参数生成新的数字人图像,再将新的数字人图像与患者肺部图像不断迭代配准和更新,得到更接近于患者肺部图像的数字人图像,最后将数字人图像与患者肺部图像进行非刚性配准并获得变形场,将变形场加到数字人肺叶的边界点云或掩模图像上,得到的结果即为本方法得到的肺叶分割结果。本发明方法首次利用数字人模型进行医学图像中器官分割,本发明方法可以有效提高患者图像存在异常或病变情形下肺叶分割的精度和稳定性。
-
公开(公告)号:CN111862320B
公开(公告)日:2020-12-11
申请号:CN202010993876.6
申请日:2020-09-21
Applicant: 之江实验室
Abstract: 本发明公开了一种SPECT三维重建图像到标准视图的自动转向方法,通过利用刚性配准算法提取SPECT三维重建图像A和标准SPECT图像R之间的刚性配准参数P形成A与P的映射数据库,利用3层卷积模块对图像A进行特征提取,并经过三次全连接转换为6维的特征向量T,经过空间变换网络应用T于A上形成网络预测的转向结果训练从而建立SPECT三维重建图像自动转向模型。将待转向SPECT三维重建图像作为输入,利用SPECT三维重建图像自动转向模型进行自动转向即可获得标准视图。本发明使用网络提取图像位置特征,形成不同角度视图到标准视图的全自动转向,减少了手动转向操作的复杂性,提高了图像操作的便捷性。
-
公开(公告)号:CN114092470A
公开(公告)日:2022-02-25
申请号:CN202111492860.8
申请日:2021-12-08
Applicant: 之江实验室
Abstract: 本发明公开了一种基于深度学习的肺裂自动检测方法及装置。本发明首先利用肺裂在二维CT图像中表现为细的曲线结构、在三维CT图像中表现为薄的曲面结构的特性,使用增强滤波对肺裂进行增强,计算每个体素的肺裂概率。但是,肺裂增强会在病理性肺导致的一些类似裂隙结构上产生虚假响应,使得肺裂提取的结果准确性过于依赖提取条件的参数设置。为此,本发明进一步利用深度学习的方法,输入严格肺裂提取条件下的不完整的肺裂,经过深度学习网络重建后得到准确且完整的最优肺裂,从而实现即便在病理性肺中仍能有效且鲁棒地完成肺裂检测。
-
公开(公告)号:CN111862320A
公开(公告)日:2020-10-30
申请号:CN202010993876.6
申请日:2020-09-21
Applicant: 之江实验室
Abstract: 本发明公开了一种SPECT三维重建图像到标准视图的自动转向方法,通过利用刚性配准算法提取SPECT三维重建图像A和标准SPECT图像R之间的刚性配准参数P形成A与P的映射数据库,利用3层卷积模块对图像A进行特征提取,并经过三次全连接转换为6维的特征向量T,经过空间变换网络应用T于A上形成网络预测的转向结果训练从而建立SPECT三维重建图像自动转向模型。将待转向SPECT三维重建图像作为输入,利用SPECT三维重建图像自动转向模型进行自动转向即可获得标准视图。本发明使用网络提取图像位置特征,形成不同角度视图到标准视图的全自动转向,减少了手动转向操作的复杂性,提高了图像操作的便捷性。
-
公开(公告)号:CN114092470B
公开(公告)日:2022-08-09
申请号:CN202111492860.8
申请日:2021-12-08
Applicant: 之江实验室
Abstract: 本发明公开了一种基于深度学习的肺裂自动检测方法及装置。本发明首先利用肺裂在二维CT图像中表现为细的曲线结构、在三维CT图像中表现为薄的曲面结构的特性,使用增强滤波对肺裂进行增强,计算每个体素的肺裂概率。但是,肺裂增强会在病理性肺导致的一些类似裂隙结构上产生虚假响应,使得肺裂提取的结果准确性过于依赖提取条件的参数设置。为此,本发明进一步利用深度学习的方法,输入严格肺裂提取条件下的不完整的肺裂,经过深度学习网络重建后得到准确且完整的最优肺裂,从而实现即便在病理性肺中仍能有效且鲁棒地完成肺裂检测。
-
公开(公告)号:CN113506333A
公开(公告)日:2021-10-15
申请号:CN202111057958.0
申请日:2021-09-09
Applicant: 之江实验室
Abstract: 本发明公开了一种基于可变形图谱的医学影像配准网络训练数据集扩充方法。该方法首先在尽可能避免引入不符合形态学变形的前提下,将输入的训练数据配准到不同形态的图谱上。随后,评估配准后训练数据和图谱的差异,修正图谱的参数向不引入不合理变形的方向微调。接着,在最大化配准精度的条件下,将输入的训练数据配准到不同形态的修正后的图谱上,恢复出训练数据第一次配准时未变形完全的细节。最后,计算相关性度量参数,剔除不满足预期的变形数据,从而生成与输入训练数据集形态不同且反应人体形态真实变化规律的扩充数据集。本发明可以有效地扩充医学影像配准网络的训练数据集,从而降低构建数据集的时间成本、人力成本和费用成本。
-
-
-
-
-
-
-