-
公开(公告)号:CN118691933B
公开(公告)日:2024-11-15
申请号:CN202411168955.8
申请日:2024-08-23
Applicant: 之江实验室
IPC: G06V10/80 , G06V10/764 , G06V10/82 , G06V10/40 , G06N3/098
Abstract: 本说明书公开了一种基于特征分布的模型训练方法和任务执行方法。所述模型训练方法包括:客户端获取本地的各样本图像,并确定每个样本图像对应的标签信息;针对每个样本图像,将该样本图像输入待训练的本地分类模型,确定该样本图像对应的数据特征并确定分类结果;根据每个样本图像的标签信息,确定每个样本图像对应数据特征的数据分布,并根据数据分布确定个体数据特征,将个体数据特征发送给服务器,服务器根据接收到的各客户端发送的个体数据特征,确定全局数据特征,并将全局数据特征返回给各客户端;根据分类结果和标签信息的之间偏差,以及个体数据特征和全局数据特征之间的偏差,确定损失值;根据损失值对本地分类模型的模型参数进行更新。
-
公开(公告)号:CN118691933A
公开(公告)日:2024-09-24
申请号:CN202411168955.8
申请日:2024-08-23
Applicant: 之江实验室
IPC: G06V10/80 , G06V10/764 , G06V10/82 , G06V10/40 , G06N3/098
Abstract: 本说明书公开了一种基于特征分布的模型训练方法和任务执行方法。所述模型训练方法包括:客户端获取本地的各样本图像,并确定每个样本图像对应的标签信息;针对每个样本图像,将该样本图像输入待训练的本地分类模型,确定该样本图像对应的数据特征并确定分类结果;根据每个样本图像的标签信息,确定每个样本图像对应数据特征的数据分布,并根据数据分布确定个体数据特征,将个体数据特征发送给服务器,服务器根据接收到的各客户端发送的个体数据特征,确定全局数据特征,并将全局数据特征返回给各客户端;根据分类结果和标签信息的之间偏差,以及个体数据特征和全局数据特征之间的偏差,确定损失值;根据损失值对本地分类模型的模型参数进行更新。
-
公开(公告)号:CN118334278B
公开(公告)日:2024-08-27
申请号:CN202410779806.9
申请日:2024-06-17
Applicant: 之江实验室
IPC: G06T17/20
Abstract: 在本说明书提供的一种点云数据处理方法、装置、存储介质及设备中,针对三维空间的每个维度,按照该维度的坐标大小,依次针对该维度的每个网格截面,确定该网格截面中标记网格的数量,与前一网格截面中标记网格的数量之间的差值,并通过预设范围,确定该维度的划分面,进而基于确定出的各划分面,得到该三维空间的划分结果,即基于点云数据所在标记网格的分布,实现了三维空间的划分,避免了相邻点云数据所在的标记网格被划分到不同三维子空间中,从而提高了基于该划分结果下的点云数据,通过预测模型,确定目标预测结果的预测效率。
-
公开(公告)号:CN117952182B
公开(公告)日:2024-06-14
申请号:CN202410345301.1
申请日:2024-03-25
Applicant: 之江实验室
Abstract: 本说明书公开了一种基于数据质量的混合精度模型训练方法及装置。所述任务执行方法包括:服务器首先接收训练指令,并执行训练指令,以获取目标模型,将预设的样本数据输入到预设的精度调整模型中,得到针对目标模型中包含的每个网络层对应关联数据的调整后精度。并根据调整后精度,对目标模型进行精度调整,得到调整后目标模型,并将样本数据输入调整后目标模型中,得到针对样本数据的预测结果,以最小化预测结果与样本数据对应的实际结果之间的偏差,以及最小化调整后目标模型处理样本数据所消耗的时间为优化目标,对目标模型以及精度调整模型进行训练。
-
公开(公告)号:CN117909746A
公开(公告)日:2024-04-19
申请号:CN202410322521.2
申请日:2024-03-20
Applicant: 之江实验室
IPC: G06F18/214 , G06F18/20
Abstract: 本说明书公开了一种用于空间探索的代理模型的在线数据选择方法,可以获取训练样本集,首先确定出训练样本集中样本的实际排序结果,在每一轮迭代训练前,通过上一轮得到的代理模型对训练样本集中的各样本进行排序,得到一个排序结果,通过实际排序结果确定出子数据集A和子数据集C,以及通过另一种排序结果,确定出子数据集B。根据子数据集A、B、C,对代理模型进行每一轮训练,训练完成后的代理模型可以对给出的若干待排序数据进行排序,本方法重点考虑排序高的空间点的数据拟合能力,并提供了一种高排序点和全空间点之间权衡的可控调节机制,从而提高了空间探索准确性,且由于提高了对高排序点的预测准确性,提高了探索的空间采样效率。
-
公开(公告)号:CN117077726B
公开(公告)日:2024-01-09
申请号:CN202311344094.X
申请日:2023-10-17
Applicant: 之江实验室
Abstract: 本申请公开了一种生成存内计算神经网络模型的方法,首先根据待构建的神经网络模型的目标任务,根据历史执行所述目标任务的任务数据作为训练样本,以及将目标任务的执行结果作为标注,之后通过对量化可微超网络的模型结构进行初始化,确定模型各节点之间数据传递顺序的有向无环图,确定架构参数以及权重参数,依该有向无环图的顺序,通过训练样本对权重参数进行调整,然后通过调整后的权重参数配置的模型,调整架构参数,得到存内运行的神经网络模型。通过权值继承,实现了可交替优化的两种参数,分别通过有监督训练和启发式学习进行调整,使得可以更为高效的学习深度神经网络架构。
-
公开(公告)号:CN117057439A
公开(公告)日:2023-11-14
申请号:CN202310893300.6
申请日:2023-07-20
Applicant: 之江实验室
IPC: G06N20/00 , G06F18/24 , G06F17/14 , G06N3/0464 , G06F18/214
Abstract: 本申请涉及一种模型参数更新方法、装置、计算机设备和存储介质。所述方法包括:接收联邦学习服务端发送的针对各联邦学习客户端所共有的数据分布预测模型的参数更新指令;其中,参数更新指令携带数据分布预测模型的共享参数和特定参数;响应于参数更新指令,对共享参数和特定参数进行更新,得到更新后的共享参数和更新后的特定参数;将更新后的共享参数发送至联邦学习服务端,并将更新后的特定参数保留在本地;接收联邦学习服务端对共享参数聚合处理后发送的聚合共享参数;基于聚合共享参数和更新后的特定参数确定对应的目标共享参数和目标特定参数。采用本方法能够解决数据异质性问题,提高数据分布预测模型的准确性。
-
公开(公告)号:CN116756293A
公开(公告)日:2023-09-15
申请号:CN202311010104.6
申请日:2023-08-11
Applicant: 之江实验室
IPC: G06F16/332 , G06F40/289 , G06F18/214 , G06F40/211 , G06F40/30 , G06F18/23
Abstract: 本说明书公开了一种模型训练的方法、装置、存储介质及电子设备,预先将文本对话生成模型的一次迭代训练过程划分为若干训练阶段,针对该文本对话生成模型的每个训练阶段,获取用于完成该训练阶段的各文本特征,作为当前文本特征,根据各当前文本特征及预设的该训练阶段的精度需求,对各当前文本特征进行聚类,得到聚类后的文本特征,对该聚类后的文本特征进行稀疏处理,得到稀疏后的文本特征,根据该稀疏后的文本特征,执行该训练阶段的训练。本方法通过将模型一次迭代过程分为多个阶段,并根据各阶段的精度需求,对文本特征进行聚类,再稀疏聚类后的文本特征,以根据稀疏聚类后的文本特征对文本对话生成模型进行训练。
-
公开(公告)号:CN116360790A
公开(公告)日:2023-06-30
申请号:CN202310274453.2
申请日:2023-03-15
Applicant: 之江实验室
Abstract: 本申请涉及一种基于虚拟机的代码编译方法、装置及执行方法、装置,其中,该基于虚拟机的代码编译方法包括:通过获取字节码中的代码块,判断代码块是否属于热点函数,若是,通过启发式编译对代码块进行编译获得第一代码;通过机器学习对代码块进行编译获得第二代码;对第一代码和第二代码进行性能评估,获得第三代码;将第三代码编译为本地代码;并将本地代码存储在预设寄存器中。通过本申请,解决了相关技术中存在传统的JIT编译方案通过解释执行的方式运行速度慢的问题,减少常用编译的代码块的反复执行的次数,省去了大量的调用和重新解释的过程,并且存放在寄存器中更可以提高执行速度,节省时间。
-
公开(公告)号:CN117952182A
公开(公告)日:2024-04-30
申请号:CN202410345301.1
申请日:2024-03-25
Applicant: 之江实验室
Abstract: 本说明书公开了一种基于数据质量的混合精度模型训练方法及装置。所述任务执行方法包括:服务器首先接收训练指令,并执行训练指令,以获取目标模型,将预设的样本数据输入到预设的精度调整模型中,得到针对目标模型中包含的每个网络层对应关联数据的调整后精度。并根据调整后精度,对目标模型进行精度调整,得到调整后目标模型,并将样本数据输入调整后目标模型中,得到针对样本数据的预测结果,以最小化预测结果与样本数据对应的实际结果之间的偏差,以及最小化调整后目标模型处理样本数据所消耗的时间为优化目标,对目标模型以及精度调整模型进行训练。
-
-
-
-
-
-
-
-
-