-
公开(公告)号:CN115996515A
公开(公告)日:2023-04-21
申请号:CN202310277812.X
申请日:2023-03-21
Abstract: 本申请涉及一种电路板和转接器。电路板包括基板、接口组和连接器。基板包括堆叠设置的布线层、第一接地层和第二接地层;所述布线层包括上布线层和下布线层;所述第一接地层和所述第二接地层设置于所述上布线层和所述下布线层之间;所述第一接地层靠近所述上布线层设置;所述第二接地层靠近所述下布线层设置;所述第一接地层与所述第二接地层共用接地端;接口组设置于所述上布线层,用于与输入设备和输出设备连接;所述接口组包括多个与所述布线层电连接的信号接口;连接器设置于所述下布线层,用于与处理器连接;所述连接器与所述布线层电连接;所述信号接口通过所述布线层与所述连接器电连接。
-
公开(公告)号:CN114486892A
公开(公告)日:2022-05-13
申请号:CN202210063094.1
申请日:2022-01-20
Abstract: 本发明公开了一种基于声光偏转扫描的结构光照明显微成像装置及方法,该装置将激发光通过偏振分光器分成两个对称的光路,每个光路各过一个声光偏转模块进行光束的扫描,两光束再通过合束器进行合束,在样品面上进行干涉产生照明条纹。每个光路中的声光偏转模块由两个互相垂直放置的两个声光偏转器以及两个透镜所构成的4f系统组成,通过控制加载在两个声光偏转模块中的各自的两个声光偏转器的载波频率,可以改变每个声光偏转器对光束的在xy平面上的扫描位置,进而得到不同方向的干涉条纹。利用声光偏转器对光束进行扫描,相比于振镜扫描可以获得更快的扫描速度;此外,相对于振镜,声光偏转器具有更高的扫描稳定性,可以实现更稳定的照明条纹。
-
公开(公告)号:CN113189848B
公开(公告)日:2024-02-13
申请号:CN202110428517.0
申请日:2021-04-21
IPC: G03F7/20
Abstract: 本发明公开了一种基于光纤阵列的多通道并行式超分辨直写式光刻系统,通过激发光的双光子效应引发负性光刻胶的光聚合,以及引入抑制光束阻止激发光焦斑边缘位置的光刻胶进行光聚合,使直写式光刻的最小特征尺寸突破光学衍射极限限制;并通过光纤阵列和普通空间光学器件实现多通道并行直写,极大地提升直写式光刻系统的运行效率。本发明使用普通市售的光纤及空间光学器件构建系统,可行性高、实现成本低。
-
公开(公告)号:CN116300328A
公开(公告)日:2023-06-23
申请号:CN202310063548.X
申请日:2023-01-13
IPC: G03F7/20
Abstract: 本发明涉及一种激光直写光源和激光直写装置,包括控制器、激光器组、单模光纤组以及光学端口,所述激光器组包括多个激光器且所有所述激光器均电连接至所述控制器,所述单模光纤组包括与所述激光器数量相同的单模光纤,所述单模光纤的一端连接至对应的所述激光器,所述单模光纤的另一端连接至所述光学端口。激光器组通过单模光纤组在光学端口处形成了激光点阵。控制器对每个激光器分别控制能量大小和通断,由此控制光学端口中激光点阵的形状和各个激光点的能量大小,从而更加方便地进行激光直写。各个激光点是由各个激光器独立产生,激光点之间不需要进行匹配,因此激光点阵的控制和改变也就特别容易和精准,在进行直写过程中也就更加稳定。
-
公开(公告)号:CN116300310A
公开(公告)日:2023-06-23
申请号:CN202310020668.1
申请日:2023-01-06
Abstract: 一种利用光引发剂实现超分辨激光直写与成像的方法,通过在光刻胶单体中加入的光引发剂7‑二乙基氨‑3‑(2‑噻吩基)香豆素(DETC),利用边缘光抑制效应(PPI),可以实现高精度激光直写;同时,利用其本身的荧光发光特性,及其存在的本征受激辐射效应,还可以实现超分辨受激辐射损耗显微成像(STED)。本发明利用DETC这些特性,在同一个装置中同时构建激光直写系统和显微成像系统,同时实现高精度刻写与超分辨成像。相比于掺杂荧光染料的方式,简化了光刻胶的成分,在一个系统中同时实现高精度刻写与超分辨成像,将刻写系统中的抑制光光路复用于成像系统中的损耗光路,有效简化了系统。本发明还包括一种利用光引发剂实现超分辨激光直写与成像的装置。
-
公开(公告)号:CN115980999A
公开(公告)日:2023-04-18
申请号:CN202310243262.X
申请日:2023-03-14
IPC: G02B27/00
Abstract: 本发明公开了一种基于光学系统的光束自动校准装置及方法,通过运用前置运算放大器、高精度模数转换芯片ADC电路采集探测器的信号,经过模数转换后在逻辑芯片进行算法实现;其后逻辑芯片再输出一组新的信号,经过后置运算放大器、高精度数模转换芯片DAC、变压器等处理,再输送至后端设备,可实现光束校准。本发明使用当前性能较高的集成电路,对光束校准测量的精度把控更精准,响应速度较快,整个装置低成本、低功耗,算法植入后全自动运作,并且可通过上位机的软件实时关注装置的工作状态。本发明采用独立芯片来采集信号、处理模数、数模转换,或者是算法运行,无论从精度上、或者是运行效率上,都高于传统设计。
-
公开(公告)号:CN113189848A
公开(公告)日:2021-07-30
申请号:CN202110428517.0
申请日:2021-04-21
IPC: G03F7/20
Abstract: 本发明公开了一种基于光纤阵列的多通道并行式超分辨直写式光刻系统,通过激发光的双光子效应引发负性光刻胶的光聚合,以及引入抑制光束阻止激发光焦斑边缘位置的光刻胶进行光聚合,使直写式光刻的最小特征尺寸突破光学衍射极限限制;并通过光纤阵列和普通空间光学器件实现多通道并行直写,极大地提升直写式光刻系统的运行效率。本发明使用普通市售的光纤及空间光学器件构建系统,可行性高、实现成本低。
-
-
-
-
-
-