一种基于图学习的稀疏投影重建方法

    公开(公告)号:CN113838161A

    公开(公告)日:2021-12-24

    申请号:CN202111413375.7

    申请日:2021-11-25

    Abstract: 本发明公开了一种基于图学习的稀疏投影重建方法,属于医学影像领域。该方法通过在投影重建方法中每次迭代的过程中进行一次全局随机采样,获取每个像素点的全局随机采样点;再根据门函数进行随机点的相似筛选;最后利用这些相似的随机点通过图学习的方法修正每个像素点的像素值。以此来消除因为硬件原因或者稀疏重建方法本身所导致的形状伪影。通过本发明,可以在传统的投影重建方法中直接引入该方法,用于修复稀疏角度导致的重建后图像中的形状伪影,大大的提升成像质量。

    基于多任务学习约束的PET图像感兴趣区域增强重建方法

    公开(公告)号:CN113256753A

    公开(公告)日:2021-08-13

    申请号:CN202110732417.7

    申请日:2021-06-30

    Abstract: 本发明公开了一种基于多任务学习约束的PET图像感兴趣区域增强重建方法,该方法先获取PET原始数据在图像域的反投影图像,设计重建主任务为利用三维深度卷积神经网络建立反投影图像与PET重建图像之间的映射。设计新增辅助任务一从反投影图像中预测与PET重建图像具有相同解剖结构的电子计算机断层扫描(CT)图像,从而利用高分辨率CT图像的局部平滑信息降低PET重建图像中的噪声。设计新增任务二实现区分反投影图像中的感兴趣区域与背景区域,在重建过程中对感兴趣区域进行增强重建,降低感兴趣区域由平滑导致的定量误差,提高PET重建精度。

    一种用于PET图像衰减校正的CT图像生成方法

    公开(公告)号:CN111436958B

    公开(公告)日:2021-06-01

    申请号:CN202010125698.5

    申请日:2020-02-27

    Abstract: 本发明公开了一种用于PET图像衰减校正的CT图像生成方法,该方法通过采集T1时刻的CT图像和PET图像以及T2时刻的PET图像,将其输入训练好的深度学习网络中,获得T2时刻的CT图像,该CT图像能用于PET图像的衰减校正,从而获得更精确的PETAC(Attenuation Correction)图片。本发明的方法能减少整个图像采集阶段病人受到的X射线的剂量,减轻病人生理和心理上受到的压力。另外,后期的图像采集只需要PET成像设备,不需要PET/CT设备,可以减小成像资源分配的成本,降低整个阶段成像的费用。

    一种SPECT三维重建图像到标准视图的自动转向方法

    公开(公告)号:CN111862320B

    公开(公告)日:2020-12-11

    申请号:CN202010993876.6

    申请日:2020-09-21

    Abstract: 本发明公开了一种SPECT三维重建图像到标准视图的自动转向方法,通过利用刚性配准算法提取SPECT三维重建图像A和标准SPECT图像R之间的刚性配准参数P形成A与P的映射数据库,利用3层卷积模块对图像A进行特征提取,并经过三次全连接转换为6维的特征向量T,经过空间变换网络应用T于A上形成网络预测的转向结果训练从而建立SPECT三维重建图像自动转向模型。将待转向SPECT三维重建图像作为输入,利用SPECT三维重建图像自动转向模型进行自动转向即可获得标准视图。本发明使用网络提取图像位置特征,形成不同角度视图到标准视图的全自动转向,减少了手动转向操作的复杂性,提高了图像操作的便捷性。

    电容耦合电阻抗层析成像图像重建方法和装置

    公开(公告)号:CN114758031A

    公开(公告)日:2022-07-15

    申请号:CN202210672852.X

    申请日:2022-06-15

    Abstract: 本发明公开了一种电容耦合电阻抗层析成像图像重建方法及装置,本发明将无监督的深度卷积网络作为先验信息来对电容耦合电阻抗层析成像的图像迭代重建过程加以约束,通过训练拥有随机初始化网络参数的深度神经网络,使得该网络能够从噪声标签图像中学习其自身的内在隐藏信息,并在训练过程中通过交替性的加权平均求和等操作逐步找到噪声图像的局部最优解,生成近似于真实图像的结果,完成去噪。本发明提出的针对于电容耦合电阻抗层析成像应用的网络先验不仅能形成类似手动先验的模式来对图像重建进行噪声约束,并且能依据图像自身的结构特点做出智能化的参数调整,形成更高质量的重建图像。

    一种无伴随CT辐射的单床PET延迟成像方法

    公开(公告)号:CN113491529B

    公开(公告)日:2021-12-17

    申请号:CN202111054080.5

    申请日:2021-09-09

    Abstract: 本发明公开了一种无伴随CT辐射的单床PET延迟成像方法,首先利用一能将PET BP图像转换成更接近于真实PET图像的Pseudo PET图像的图像重建网络,将正常扫描和延迟扫描得到的PET BP图像转换成Pseudo PET图像,然后利用一CT图像生成网络,输入包含正常扫描的Pseudo PET图像和CT图像,以及延迟扫描的Pseudo PET图像,输出获得正常扫描和延迟扫描间的变形场和延迟扫描时刻的CT图像,该CT图像最后用于延迟扫描PET图像重建中的衰减校正,得到SUV定量准确的PET图像并用于肿瘤检测。本发明的方法能消除延迟扫描中病人接受的CT辐射,减轻病人生理和心理上的压力,推动PET延迟成像的应用。

    一种用于PET图像衰减校正的CT图像生成方法

    公开(公告)号:CN111436958A

    公开(公告)日:2020-07-24

    申请号:CN202010125698.5

    申请日:2020-02-27

    Abstract: 本发明公开了一种用于PET图像衰减校正的CT图像生成方法,该方法通过采集T1时刻的CT图像和PET图像以及T2时刻的PET图像,将其输入训练好的深度学习网络中,获得T2时刻的CT图像,该CT图像能用于PET图像的衰减校正,从而获得更精确的PETAC(Attenuation Correction)图片。本发明的方法能减少整个图像采集阶段病人受到的X射线的剂量,减轻病人生理和心理上受到的压力。另外,后期的图像采集只需要PET成像设备,不需要PET/CT设备,可以减小成像资源分配的成本,降低整个阶段成像的费用。

    基于多任务学习约束的PET图像感兴趣区域增强重建方法

    公开(公告)号:CN113256753B

    公开(公告)日:2021-10-29

    申请号:CN202110732417.7

    申请日:2021-06-30

    Abstract: 本发明公开了一种基于多任务学习约束的PET图像感兴趣区域增强重建方法,该方法先获取PET原始数据在图像域的反投影图像,设计重建主任务为利用三维深度卷积神经网络建立反投影图像与PET重建图像之间的映射。设计新增辅助任务一从反投影图像中预测与PET重建图像具有相同解剖结构的电子计算机断层扫描(CT)图像,从而利用高分辨率CT图像的局部平滑信息降低PET重建图像中的噪声。设计新增任务二实现区分反投影图像中的感兴趣区域与背景区域,在重建过程中对感兴趣区域进行增强重建,降低感兴趣区域由平滑导致的定量误差,提高PET重建精度。

    一种无伴随CT辐射的单床PET延迟成像方法

    公开(公告)号:CN113491529A

    公开(公告)日:2021-10-12

    申请号:CN202111054080.5

    申请日:2021-09-09

    Abstract: 本发明公开了一种无伴随CT辐射的单床PET延迟成像方法,首先利用一能将PET BP图像转换成更接近于真实PET图像的Pseudo PET图像的图像重建网络,将正常扫描和延迟扫描得到的PET BP图像转换成Pseudo PET图像,然后利用一CT图像生成网络,输入包含正常扫描的Pseudo PET图像和CT图像,以及延迟扫描的Pseudo PET图像,输出获得正常扫描和延迟扫描间的变形场和延迟扫描时刻的CT图像,该CT图像最后用于延迟扫描PET图像重建中的衰减校正,得到SUV定量准确的PET图像并用于肿瘤检测。本发明的方法能消除延迟扫描中病人接受的CT辐射,减轻病人生理和心理上的压力,推动PET延迟成像的应用。

Patent Agency Ranking