一种基于端边云架构的深度神经网络协同推理方法

    公开(公告)号:CN112348172A

    公开(公告)日:2021-02-09

    申请号:CN202011268445.X

    申请日:2020-11-13

    Abstract: 本发明公开了一种基于端边云架构的深度神经网络协同推理方法,该方法通过端、边、云协同的方式加速端侧推理速度,将人工智能中的深度模型,根据神经网络的分层进行分割,将模型推理过程中的计算任务根据网络环境、端边云三方的资源配额及使用情况,发送到对应的端侧,完成推理的整个过程。本发明公开了模型分割的整体框架及分割计算任务所使用的算法组件及原理,通过端边云的协同,可以加速端侧的推理速度,提高业务场景的中的实时性,同时减少资源端的能耗。

    基于深度强化学习实现人脸识别端边卸载计算方法及装置

    公开(公告)号:CN112069903A

    公开(公告)日:2020-12-11

    申请号:CN202010789192.4

    申请日:2020-08-07

    Abstract: 本发明公开了一种基于深度强化学习实现人脸识别端边卸载计算方法及装置,包括:获取真实的人脸图片,根据边端人脸识别模型训练得到分类数据,其中,分类数据包括图片名称、id、图片提取出的128维特征向量、终端预测置信度、终端预测值、边缘预测值;将深度学习与强化学习进行结合,定义马尔科夫决策过程的状态空间、动作集、奖励函数和智能体;根据定义好的马尔科夫决策过程,构建Actor神经网络和Critic神经网络,使用分类数据对构建好的Actor神经网络和Critic神经网络进行训练,获得智能卸载决策模型;对智能卸载决策模型的性能与基准查询策略进行对比评估;根据对比评估的结果,将智能卸载决策模型部署到智能终端设备中,进行人脸识别的任务卸载决策。

Patent Agency Ranking