-
公开(公告)号:CN117744838A
公开(公告)日:2024-03-22
申请号:CN202410106133.0
申请日:2024-01-25
Applicant: 之江实验室
Abstract: 本发明公开了一种用于大模型参数分区的并行训练加速方法和系统,属于大模型预训练领域,包括:采集大模型训练时数据并行模式下的预配置信息和运行时信息;根据采集到的信息构建模型参数分区的性能决策模型,基于网格搜索算法和改进的通信算法得到包含冗余集的模型参数分区优化方案;结合数据并行模式和模型参数分区优化方案对大模型进行训练,得到包含训练时间开销和GPU显存利用率的当前指标;以当前指标最优为目标对前述步骤进行多次迭代,直到得到最优的模型参数分区方案,并运用于剩下的迭代训练。本发明提出的包含冗余集的模型参数分区方案,提供了一种灵活的大模型训练方案,能够明显节省通信开销,减少整体训练时间,从而提升训练效率。
-
公开(公告)号:CN113656333B
公开(公告)日:2022-03-18
申请号:CN202111221953.7
申请日:2021-10-20
Applicant: 之江实验室
IPC: G06F12/0893 , G06N3/08
Abstract: 本发明公开了一种加速深度学习训练任务数据载入的方法,该方法使用双随机序列方式,在每个训练周期开始时提前计算下一个周期的随机序列,并申请一块独立的内存提前缓存下一个周期初始阶段所需数据。根据当前周期的随机序列依次为神经网络准备数据的同时,可参照下一个周期的随机序列及时将下一个周期初始阶段所需数据依次从内存拷贝到缓存,使得下一个周期初始阶段所需的数据可全部从缓存获得。本发明不需修改现有深度学习的架构,实现简单,引入的计算开销小,缓存数据能全部命中且可被使用多次,从而减少从后端存储系统读取数据,并且训练周期数越多,此方法的加速效果越明显。
-