-
公开(公告)号:CN102322810B
公开(公告)日:2013-05-01
申请号:CN201110227238.4
申请日:2011-08-10
Applicant: 中国计量学院
Abstract: 本发明公开了一种混沌激光相关集成光纤拉曼放大器的布里渊光时域分析器,它是利用混沌激光相关原理、光纤受激拉曼散射光放大效应和相干放大的布里渊散射光的应变、温度效应和光时域反射原理制成的;本发明通过传感光纤的背向探测光与本地参考光的相关处理,提高了传感器系统的空间分辨率;采用连续运行的高功率光纤拉曼激光器作为布里渊光时域分析器的泵浦光源,克服了光纤布里渊光时域分析器要求严格地锁定探测激光器和泵浦激光器频率的困难,利用宽带光纤拉曼放大器取代窄带光纤布里渊放大器,增加了背向相于放大的受激布里渊散射光的增益,提高了传感器系统的信噪比,相应地提高了传感器的测量长度与测量精度。
-
公开(公告)号:CN102662288A
公开(公告)日:2012-09-12
申请号:CN201210160234.3
申请日:2012-05-16
Applicant: 中国计量学院
IPC: G02F1/365
Abstract: 本发明公开了一种对脉冲光多次滤波的装置,包括光纤耦合器、光纤环形器、布拉格光纤光栅、单模光纤、掺饵光纤放大器和电光开关。脉冲光通过光纤环形器第一端口入射,由第二端口进入布拉格光纤光栅,满足布拉格波长条件的光被反射,若反射光由环形器第三端口返回延时光纤产生时延,再经掺饵光纤放大器后通过电光开光输出,则构成带通滤波器;若反射光由环形器第三端口射出,而透射光由环形器第二端口进入延时光纤,并经掺饵光纤放大器后通过电光开关输出,则构成带阻滤波器。该滤波装置可通过控制电光开关使得滤波后的光再次进入光路循环,多次滤波。本发明原理简单,边带抑制比高。
-
公开(公告)号:CN102071015A
公开(公告)日:2011-05-25
申请号:CN201110024772.5
申请日:2011-01-21
Applicant: 中国计量学院
IPC: C09K11/64
CPC classification number: Y02B20/181
Abstract: 一种铕、锰共掺激活的白光荧光粉及其制备方法,属于稀土发光材料技术领域,其特征在于:其化学通式为:Ba1-x-ySrx-zAl2Si2O8:yEu2+,zMn2+,x取值范围为0~0.5,y取值范围为0.01~0.1,z取值范围为0.01~0.1;按化学通式称取试剂(碳酸钡BaCO3(A.R.)(A.R.表示分析纯)、氧化锶SrO(A.R.)、九水硝酸铝Al(NO3)3·9H2O(99.99%),氧化硅SiO2(A.R.),碳酸锰MnCO3(A.R.)和氧化铕Eu2O3(纯度99.99%),经研磨混匀、高温烧结、粉碎、研磨、过筛、水洗并烘干即可得到所述荧光粉;本发明的荧光粉,可与紫外或近紫外LED晶片结合制备高显色性白光LED,具有良好的应用前景。
-
公开(公告)号:CN102062649A
公开(公告)日:2011-05-18
申请号:CN201010566494.1
申请日:2010-11-26
Applicant: 中国计量学院
Abstract: 本发明公开的光纤拉曼频移器双波长光源自校正分布式光纤拉曼温度传感器,包括光纤脉冲激光器,光纤分路器,由单模光纤和1660nm滤光器组成的光纤拉曼频移器,两个光纤波分复用器,两个光纤开关,传感光纤,光电接收模块,数字信号处理器和工控机。该传感器用一只光纤脉冲激光器通过光纤拉曼频移器获得拉曼相关双波长光源,自校正在现场使用测温光纤光缆时由于光纤、光缆产生的弯曲和受压拉伸而造成的非线性损耗,克服了测温系统中用斯托克斯拉曼参考通道解调反斯托克斯拉曼信号通道时偏离线性而造成的测温误差。成本低、寿命长、结构简单、信噪比好,可靠性好,适用于远程30公里范围内石化管道,隧道,大型土木工程监测和灾害预报监测。
-
公开(公告)号:CN100514886C
公开(公告)日:2009-07-15
申请号:CN200510030009.8
申请日:2005-09-22
Applicant: 中国计量学院
Abstract: 本发明公开的测量光纤拉曼增益系数的装置包括光纤激光器,泵浦-信号光纤波分复用器和光纤光谱仪,泵浦-信号光纤波分复用器的输入端接有用于与被测单模光纤连接的第一光纤接头,泵浦-信号光纤波分复用器的输出端经第二光纤接头与光纤光谱仪相连,泵浦-信号光纤波分复用器的泵浦端经第三光纤接头与光纤激光器相连。本发明的装置中不用信号源,采用光纤激光器作为泵浦源,耦合方式简单,耦合效率高,无偏振依赖性,测量信噪比高,与现有小信号增益测量法相比,具有测量精度高、范围宽、稳定性好和速度快的特点。该测量装置可广泛用于各种通信光纤、宽带平坦光纤拉曼放大器的设计和制作中。
-
公开(公告)号:CN101162175A
公开(公告)日:2008-04-16
申请号:CN200710156867.6
申请日:2007-11-15
Applicant: 中国计量学院
Abstract: 本发明公开的集成拉曼放大器的超远程分布式光纤拉曼光子温度传感器,包括分布式光纤拉曼光子温度传感器,分布式光纤拉曼放大器以及光纤光栅窄带反射滤波器。采用在分布式光纤拉曼光子温度传感器中嵌入分布式光纤拉曼放大器,利用放大器的增益克服了光纤损耗,增强了光纤中自发拉曼散射光的强度,提高了分布式光纤拉曼光子温度传感器系统的信噪比,增大了分布式光纤拉曼光子温度传感器的传输距离,提高了温度测量精度。本发明巧妙地利用了光纤受激拉曼散射效应,光纤自发拉曼散射效应和光时域反射原理,将分布式光纤拉曼放大器与分布式光纤拉曼温度传感器技术融合在一起,实现了超远程分布式光纤拉曼温度传感器。
-
公开(公告)号:CN1444026A
公开(公告)日:2003-09-24
申请号:CN03116523.0
申请日:2003-04-17
Applicant: 中国计量学院
Abstract: 本发明的远程30公里分布光纤拉曼温度传感器系统包括掺铒光纤激光器产生的激光脉冲进入光纤双向耦合器,光纤双向耦合器的输出分二路,其一路接单模传感光纤,另一路接多光束干涉滤光器,多光束干涉滤光器输出的带有温度信息的反斯托克斯拉曼背向自发散射信号输入InGaAs光电雪崩二极管模块,InGaAs光电雪崩二极管模块的输出信号经主放大器放大输入高速采集累加卡,高速采集累加卡的输出端与计算机相连。本发明在30公里光纤上能同时测量30,000个点的温度值,并可以对空间每个测温点进行定位,光纤本身不带电,是本质安全型的,能在易燃,易爆,有害气体的危险场合下使用。
-
公开(公告)号:CN103822733A
公开(公告)日:2014-05-28
申请号:CN201410106690.9
申请日:2014-03-21
Applicant: 中国计量学院
IPC: G01K11/32
Abstract: 本发明公开的高空间分辨率光纤测温带包括上覆压链带,下覆压链带,彼此间隔的光纤绕轮和测温光纤,测温光纤环绕在彼此间隔的光纤绕轮上,上覆压链带和下覆压链带分别覆压在光纤绕轮的上下两面,并通过螺杆和螺帽与光纤绕轮紧固。该测温带结构简单、成本低、可靠性高、易于安装,可解决分布式光纤拉曼温度传感器空间分辨率较低的问题,可实现厘米级的高空间分辨率,适用于发动机舱、发电机内部温度分布检测,液体层精密温度分布分析等需要高空间分辨率分布温度检测的领域。
-
公开(公告)号:CN102564642B
公开(公告)日:2013-08-07
申请号:CN201210038827.2
申请日:2012-02-21
Applicant: 中国计量学院
IPC: G01K11/32
CPC classification number: G01D5/35364 , G01K11/32 , G01K2011/324
Abstract: 本发明公开了一种融合拉曼放大效应的光纤拉曼频移器的全分布光纤传感器,该传感器用一只1550nm光纤脉冲激光器通过光纤分路器分成两束光,一束光经光纤拉曼频移器转换为宽光谱的斯托克斯拉曼光进入传感光纤,另一束光经过延时光纤后与宽光谱斯托克斯拉曼光通过光纤合路器进入同一根传感光纤,两束光在传感光纤相遇处通过非线性相互作用融合,获得一束被拉曼放大的1660nm宽光谱带脉冲激光作为全分布光纤传感器的光源,传感光纤中产生的带有温度信息的1550nm宽光谱反斯托克斯拉曼光通过光纤窄带反射滤光器扣除1550nm激光器瑞利散射光后与带有应变信息的1660nm瑞利光,进入光电接收模块,数字信号处理器和工控机,经解调后获得传感光纤上的温度、应变信息。适用于远程60公里范围内石化管道,隧道,大型土木工程监测和灾害预报监测。
-
公开(公告)号:CN102322883B
公开(公告)日:2013-06-05
申请号:CN201110226271.5
申请日:2011-08-09
Applicant: 中国计量学院
Abstract: 本发明的脉冲编码分布式光纤拉曼、布里渊散射传感器包括波形发生器,半导体FP腔宽带光纤激光器,半导体外腔窄带脉冲光纤激光器,光纤分波器,脉冲编码光调制器,单向器,掺鉺光纤放大器,双向耦合器,传感光纤,集成波分复用器,两个光电接收放大模块,直接检测系统,窄带的透射光纤光栅,环行器,相干检测系统和工控机。该传感器采用两个激光光源,其中,半导体FP腔宽带光纤激光器利用光纤自发拉曼散射強度比测温,另一个半导体外腔窄带脉冲光纤激光器利用光纤自发布里渊散射线的频移测应变。采用时间序列编码激光脉冲,在提高发射光子数的同时又可通过压窄激光脉冲宽度提高空间分辨率,增加系统的信噪比,在空间实现在线温度和应变的同时测量并改善了测量精度。
-
-
-
-
-
-
-
-
-