一种燃烧流场光学温度场测量装置及测量方法

    公开(公告)号:CN114754891A

    公开(公告)日:2022-07-15

    申请号:CN202210662035.6

    申请日:2022-06-13

    Abstract: 本发明公开了一种燃烧流场光学温度场测量装置及测量方法,涉及燃烧流场温度测量技术领域,装置包括:窄带脉冲激光器、匀光棒、扩束镜、空间光调制器、准直投影系统、反射镜、屏幕、成像系统和计算机;装置采用结构平行光投影方式代替传统固定的随机点阵图,可根据互相关窗口大小和测量区域需要对点阵密度进行实时调整,提高温度测量精度;采用非相干窄带脉冲激光光源和对应波长的滤光片,可以抑制火焰强自发光干扰,解决粒子图像信噪比低、无法有效提取相对位移的难题。

    一种航空发动机燃烧室出口燃气温度质谱测量系统及方法

    公开(公告)号:CN119533697A

    公开(公告)日:2025-02-28

    申请号:CN202411705685.X

    申请日:2024-11-26

    Abstract: 本发明属于燃气温度测量领域,提供了一种航空发动机燃烧室出口燃气温度质谱测量系统及方法,解决了现有的温度测量不准确的问题,其技术方案为包括分子束电离源、质谱仪和温度计算模块;分子束电离源包括分子束电离源腔,分子束电离源腔内设置平板电极、锥孔电极、传输电极组和差分电极组,平板电极和锥孔电极之间构成燃气分子束形成区,锥孔电极和传输电极组之间构成电离区,传输电极组和差分电极组之间构成传输区,燃气分子束形成区、电离区和传输区相通后连接至质谱仪测量得到出口燃气各稳定组分及活泼组分的浓度;温度计算模块和质谱仪相连,被配置为:根据出口燃气各稳定组分及活泼组分的浓度计算得到出口燃气的温度;提高了温度反算的精度。

    非平衡流场氧原子辐射光谱的电子温度场重构方法及装置

    公开(公告)号:CN115790885A

    公开(公告)日:2023-03-14

    申请号:CN202310085061.1

    申请日:2023-02-09

    Abstract: 本发明公开了非平衡流场氧原子辐射光谱的电子温度场重构方法及装置,涉及非平衡流场非接触测量技术领域,所述方法包括接收待测流场光并分离出与光轴平行的光,处理光学系统分离的光,偏转角度为0时获取第i条特征谱线的光强强度第一平行光,偏转角度为获取第i条特征谱线的迹线强度第二平行光,相互抵消提高信噪比,获得第三平行光,利用第三平行光,重建第i条特征谱线的光强场,基于事先的标定处理获得镜头的内外参数矩阵,利用特征谱线表示的能级跃迁的辐射强度得到玻尔兹曼分布,从而获取电子温度,最终根据离散结构,根据各点计算结果形成待测流场的电子温度场,实现场角度分析待测流场。

    一种点线融合标记的FLEET测速方法及装置

    公开(公告)号:CN115754344A

    公开(公告)日:2023-03-07

    申请号:CN202211417230.9

    申请日:2022-11-14

    Abstract: 本发明公开了一种点线融合标记的FLEET测速方法及装置,涉及气体流场测速技术领域,该方法包括以下步骤:获取气体流场位置,将输出的激光分成线激发激光和点激发激光;线激发激光在测量区域聚焦产生荧光标记线;将点激发激光调制为线光束组,线光束组与荧光标记线相交得到荧光标记点;获取先后两个时刻下点线融合标记的荧光信号得到两幅荧光图像;提取荧光标记线在两幅荧光图像中的空间位置,实现荧光线标记分子团在两幅荧光图像中的成功匹配,利用荧光标记线在两幅荧光图像中的空间位置差值与两个不同时刻差值的比值,计算荧光标记线处的流场速度。本方法利用点线融合增强标记,通过提高示踪分子空间位置匹配精度,提升气体流场的速度测量精度。

    一种粒子图像测速畸变修正装置及方法

    公开(公告)号:CN114755449B

    公开(公告)日:2022-08-26

    申请号:CN202210664933.5

    申请日:2022-06-14

    Abstract: 本发明公开了一种粒子图像测速畸变修正装置及方法,涉及燃烧流场探测技术领域,将空间光调制技术与BOS技术相结合,采用网格结构的光作为BOS技术的信标,对燃烧场特定位置进行实时投影,获得燃烧场测量区域的畸变图像和测速图像,通过解算所述畸变图像获得光学畸变信息,实现对粒子测速图像的实时修正,克服了传统粒子图像测速畸变修正方法中,基于背景纹影技术测量畸变场时随机点阵图与相机只能放置在燃烧流场两侧,表征的是光线传播方向的全流域畸变场,无法得到特定区域的畸变特性的问题,并实现了畸变场与粒子图像速度的同步测量。

    一种旋流对冲式PIV固体粒子发生器及粒子发生方法

    公开(公告)号:CN114527295A

    公开(公告)日:2022-05-24

    申请号:CN202210150602.X

    申请日:2022-02-18

    Abstract: 本发明公开了一种旋流对冲式PIV固体粒子发生器及粒子发生方法,发生器包括旋流腔、与旋流腔连通的进气喷管和粒子对冲管,所述旋流腔由依次可拆卸连接的弧形底件、收口型中间件、凹型顶件围绕而成;所述粒子对冲管上设置总出气口;所述弧形底件的凹面朝上,所述收口型中间件的内径由下往上逐渐减小,所述凹型顶件的凹面朝下;所述进气喷管自弧形底件插入至旋流腔中,所述粒子对冲管连通至凹型顶件内。本发明用以解决现有技术中PIV粒子发生器不能满足超声速流场及燃烧场中复杂恶劣的测试环境要求的问题,实现提高粒子流化效果、降低粒子团聚成堆几率、且便于拆卸清理的目的。

    一种粒子图像测速畸变修正装置及方法

    公开(公告)号:CN114755449A

    公开(公告)日:2022-07-15

    申请号:CN202210664933.5

    申请日:2022-06-14

    Abstract: 本发明公开了一种粒子图像测速畸变修正装置及方法,涉及燃烧流场探测技术领域,将空间光调制技术与BOS技术相结合,采用网格结构的光作为BOS技术的信标,对燃烧场特定位置进行实时投影,获得燃烧场测量区域的畸变图像和测速图像,通过解算所述畸变图像获得光学畸变信息,实现对粒子测速图像的实时修正,克服了传统粒子图像测速畸变修正方法中,基于背景纹影技术测量畸变场时随机点阵图与相机只能放置在燃烧流场两侧,表征的是光线传播方向的全流域畸变场,无法得到特定区域的畸变特性的问题,并实现了畸变场与粒子图像速度的同步测量。

    一种基于柔性光纤束的航空发动机燃烧室三维高速测量系统

    公开(公告)号:CN119437726A

    公开(公告)日:2025-02-14

    申请号:CN202411634609.4

    申请日:2024-11-15

    Abstract: 本发明公开了一种基于柔性光纤束的航空发动机燃烧室三维高速测量系统,包括:一台高速相机、一组柔性光纤束和多个耐高温内窥镜;一组柔性光纤束由一端为母光纤,另一端位多个子光纤构成;多个子光纤与多个耐高温内窥镜一一对应连接,多个耐高温内窥镜均匀布置在待测量燃烧室外周,且插入燃烧室内部;高速相机用于采集所述母光纤信号。该系统采用柔性光纤束作为传感器,能够满足航空发动机燃烧室内部恶劣环境的要求。同时,该系统采用单相机高速三维成像技术,无需同步控制多台高速相机,降低了实验成本和同步控制难度。实现了三维高速采集;同时,内窥镜采用隔热及抗振结构,可在航空发动机燃烧室内长时间稳定工作,显著提高了其使用寿命。

    一种旋流对冲式PIV固体粒子发生器及粒子发生方法

    公开(公告)号:CN114527295B

    公开(公告)日:2024-05-17

    申请号:CN202210150602.X

    申请日:2022-02-18

    Abstract: 本发明公开了一种旋流对冲式PIV固体粒子发生器及粒子发生方法,发生器包括旋流腔、与旋流腔连通的进气喷管和粒子对冲管,所述旋流腔由依次可拆卸连接的弧形底件、收口型中间件、凹型顶件围绕而成;所述粒子对冲管上设置总出气口;所述弧形底件的凹面朝上,所述收口型中间件的内径由下往上逐渐减小,所述凹型顶件的凹面朝下;所述进气喷管自弧形底件插入至旋流腔中,所述粒子对冲管连通至凹型顶件内。本发明用以解决现有技术中PIV粒子发生器不能满足超声速流场及燃烧场中复杂恶劣的测试环境要求的问题,实现提高粒子流化效果、降低粒子团聚成堆几率、且便于拆卸清理的目的。

Patent Agency Ranking