一种用于半监督学习的神经网络模型以及半监督学习方法

    公开(公告)号:CN113128669A

    公开(公告)日:2021-07-16

    申请号:CN202110374736.5

    申请日:2021-04-08

    Abstract: 本发明提供了一种半监督学习方法,该方法包括:利用有标签数据对神经网络模型进行初始训练;获得待标定的无标签数据的增强数据;利用初始训练好的神经网络模型标定待标定的无标签数据及其增强数据的伪标签;利用有标签数据以及待标定的伪标签数据重新训练神经网络模型;其中,用于半监督学习的神经网络模型包括:输入层,用于接收输入数据;第一隐藏层,用于提取输入数据的低层语义信息;语义层,用于基于低层语义信息确定输入数据的低层语义标签;第二隐藏层,用于基于输入数据及其低层语义标签提取输入数据的高层语义信息;以及输出层,用于基于输入数据的高层语义信息确定其高层语义标签,并作为最终标签输出。

    一种基于机会感知的行为识别方法和系统

    公开(公告)号:CN109063722B

    公开(公告)日:2021-06-29

    申请号:CN201810588551.2

    申请日:2018-06-08

    Abstract: 本发明涉及一种基于机会感知的行为识别方法,包括:模型建立步骤,通过可穿戴传感器采集用户行为的初始数据,对该初始数据进行处理以构建用于识别该用户行为的感知模型;数据感知步骤,通过该可穿戴传感器采集该用户行为的增量数据;数据选择步骤,对该增量数据进行筛选,以从中获取机会数据;机会计算步骤,以该机会数据对该感知模型进行更新。

    基于双重迁移的认知障碍辅助决策支持方法和系统

    公开(公告)号:CN112861879A

    公开(公告)日:2021-05-28

    申请号:CN202110203086.8

    申请日:2021-02-23

    Abstract: 本发明提出一种基于双重迁移的认知障碍辅助决策支持方法和系统,包括本发明提出的方法将样本损失加权选择与特征适配相融合,从双重层面进行迁移,通过对源域样本损失加权,增强与目标域知识关联度高的源域样本作用,同时削弱无关样本的作用;同时,通过对源域与目标域特征空间的适配,拉近领域间分布差异。最终构建在目标域上性能良好的分类模型,判断有无认知障碍。

    一种基于面部表情的视力筛查模型及其构建方法

    公开(公告)号:CN118212674A

    公开(公告)日:2024-06-18

    申请号:CN202410302591.1

    申请日:2024-03-18

    Abstract: 本发明提供一种基于面部表情的视力筛查模型构建方法,视力筛查模型用于基于人脸图像判定受试者视力是否异常,包括:S1、构建初始模型,所述初始模型包括特征提取器、残差计算器、注意力模块和异常检测模块;S2、构建数据集,其包括多个受试者的人脸图像,并将受试者是否近视作为图像标签,从每个受试者的多个正常图像中随机选择一个作为该受试者的参考图像;S3、基于数据集构建第一训练集和第二训练集,所述第一训练集是以所有正常图像为训练图像与所有参考图像共同构成的集合,所述第二训练集是以所有正常图像和所有异常图像为训练图像并与所有参考图像共同构成的集合;S4、采用所述第一训练集和第二训练集依次对所述初始模型进行训练。

    一种图像分类模型的增量训练方法、图像分类模型及方法

    公开(公告)号:CN117746184A

    公开(公告)日:2024-03-22

    申请号:CN202311795114.5

    申请日:2023-12-25

    Abstract: 本发明提供了一种图像分类模型的增量训练方法,所述方法包括:S1、采用上一次增量训练得到的图像分类模型作为当前轮初始图像分类模型;所述图像分类模型包括特征提取器和分类器,所述特征提取器用于提取图像数据的特征向量,所述分类器用于根据特征向量进行图像分类;S2、采用新训练集和旧训练集训练所述步骤S1中得到的初始图像分类模型至收敛,在训练过程中采用预设的总损失函数更新模型参数,所述总损失包括交叉熵损失和对比损失,所述对比损失是基于新训练集和旧训练集中的所有正对和负对计算。本发明的技术方案通过在训练中采用了包括基于图像的特征向量和类的特征向量的构建的正对和负对的对比损失,从而缓解了增量学习中的灾难性遗忘问题。

Patent Agency Ranking